Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Properties of Core-Shell Nanoparticles
2.1.1. Shell Thickness and Surface Properties
2.1.2. Spectroscopic Measurements
2.2. Photocatalytic Dye Degradation
3. Materials and Methods
3.1. Sol-Gel Coating of onto Anatase Nanoparticles
3.2. Material Characterisation
3.3. Photocatalytic Dye Degradation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATR-FTIR | Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy |
BET | Brunauer-Emmett-Teller |
EDX | Energy Dispersive X-Ray Spectroscopy |
MB | Methylene Blue |
MO | Methyl Orange |
IEP | Isoelectric Point |
SA | Surface Area |
SSA | Selective Surface Area |
TEM | Transmission Electron Microscopy |
TEOS | Tetraethyl Orthosilicate |
TPB | Tripe Phase Boundary |
US | Ultrasonication |
UV | Ultraviolet |
References
- Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C-Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Ekka, B.; Sahu, M.K.; Patel, R.K.; Dash, P. Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: Optimization using statistical design. Water Resour. Ind. 2016. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Guasaquillo, I.; Laub, D.; Kiwi, J. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J. Photochem. Photobiol. A-Chem. 2005, 174, 156–164. [Google Scholar] [CrossRef]
- Huang, C.; Bai, H.; Huang, Y.; Liu, S.; Yen, S.; Tseng, Y. Synthesis of Neutral SiO2 TiO2 Hydrosol and It’s Application as Antireflective Self-Cleaning Thin Film. Int. J. Photoenergy 2012. [Google Scholar] [CrossRef]
- Hu, S.; Li, F.; Fan, Z. Preparation of SiO2-Coated TiO2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light. Bull. Korean Chem. Soc. 2012, 33, 1895–1899. [Google Scholar] [CrossRef]
- Ullah, S.; Ferreira-Neto, E.P.; Pasa, A.A.; Alcântara, C.C.J.; Acuña, J.J.S.; Bilmes, S.A.; Martínez Ricci, M.L.; Landers, R.; Fermino, T.Z.; Rodrigues-Filho, U.P. Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Appl. Catal. B Environ. 2015, 179, 333–343. [Google Scholar] [CrossRef]
- Moya, A.; Kemnade, N.; Osorio, M.R.; Cherevan, A.; Granados, D.; Eder, D.; Vilatela, J.J. Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO2. J. Mater. Chem. A 2017, 5, 24695–24706. [Google Scholar] [CrossRef] [Green Version]
- Shearer, C.J.; Cherevan, A.; Eder, D. Application and Future Challenges of Functional Nanocarbon Hybrids. Adv. Mater. 2014, 26, 2295–2318. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D.L.; Zboril, R.; Varma, R.S. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590. [Google Scholar] [CrossRef]
- Ghosh Chaudhuri, R.; Paria, S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef]
- Chang, M.; Song, Y.; Chen, J.; Cui, L.; Shi, Z.; Sheng, Y.; Zou, H. Photocatalytic and Photoluminescence Properties of Core–Shell SiO2@TiO2:Eu3+,Sm3+ and Its Etching Products. ACS Sustain. Chem. Eng. 2018, 6, 223–236. [Google Scholar] [CrossRef]
- Williams, P.A.; Ireland, C.P.; King, P.J.; Chater, P.A.; Boldrin, P.; Palgrave, R.G.; Claridge, J.B.; Darwent, J.R.; Chalker, P.R.; Rosseinsky, M.J. Atomic layer deposition of anatase TiO2 coating on silica particles: Growth, characterization and evaluation as photocatalysts for methyl orange degradation and hydrogen production. J. Mater. Chem. 2012, 22, 20203–20209. [Google Scholar] [CrossRef]
- Gong, Y.; Ping Wang, D.; Wu, R.; Gazi, S.; Sen Soo, H.; Sritharan, T.; Chen, Z. New insights into the photocatalytic activity of 3-D core–shell P25@silica nanocomposites: impact of mesoporous coating. Dalton Trans. 2017, 46, 4994–5002. [Google Scholar] [CrossRef] [PubMed]
- Grover, I.S.; Prajapat, R.C.; Singh, S.; Pal, B. SiO2-coated pure anatase TiO2 catalysts for enhanced photo-oxidation of naphthalene and anthracene. Particuology 2017, 34, 156–161. [Google Scholar] [CrossRef]
- Nič, M.; Jirát, J.; Košata, B.; Jenkins, A.; McNaught, A. (Eds.) IUPAC Compendium of Chemical Terminology: Gold Book, 2.1.0 ed.; IUPAC: Research Triagle Park, NC, USA, 2009. [Google Scholar]
- Yuan, L.; Han, C.; Pagliaro, M.; Xu, Y.J. Origin of Enhancing the Photocatalytic Performance of TiO2 for Artificial Photoreduction of CO2 through a SiO2 Coating Strategy. J. Phys. Chem. C 2016, 120, 265–273. [Google Scholar] [CrossRef]
- El-Toni, A.M.; Yin, S.; Sato, T. Control of silica shell thickness and microporosity of titania–silica core–shell type nanoparticles to depress the photocatalytic activity of titania. J. Colloid Interface Sci. 2006, 300, 123–130. [Google Scholar] [CrossRef]
- Kamegawa, T.; Ishiguro, Y.; Magatani, Y.; Yamashita, H. Spherical TiO2/Mesoporous SiO2 Core/Shell Type Photocatalyst for Water Purification. J. Nanosci. Nanotechnol. 2016, 16, 9273–9277. [Google Scholar] [CrossRef]
- Zhan, S.; Chen, D.; Jiao, X.; Song, Y. Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties. Chem. Commun. 2007, 2043–2045. [Google Scholar] [CrossRef]
- Nadrah, P.; Gaberšček, M.; Sever Škapin, A. Selective degradation of model pollutants in the presence of core@shell TiO2@SiO2 photocatalyst. Appl. Surf. Sci. 2017, 405, 389–394. [Google Scholar] [CrossRef]
- Gholami, T.; Bazarganipour, M.; Salavati-Niasari, M.; Bagheri, S. Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: Synthesis and characterization. J. Mater. Sci.-Mater. Electron. 2015, 26, 6170–6177. [Google Scholar] [CrossRef]
- Siddiquey, I.A.; Furusawa, T.; Sato, M.; Honda, K.; Suzuki, N. Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes Pigm. 2008, 76, 754–759. [Google Scholar] [CrossRef]
- Qi, F.; Moiseev, A.; Deubener, J.; Weber, A. Thermostable photocatalytically active TiO2 anatase nanoparticles. J. Nanopart. Res. 2011, 13, 1325–1334. [Google Scholar] [CrossRef]
- Nussbaum, M.; Paz, Y. Ultra-thin SiO2 layers on TiO2: Improved photocatalysis by enhancing products’ desorption. Phys. Chem. Chem. Phys. 2012, 14, 3392–3399. [Google Scholar] [CrossRef]
- Chen, C.; Wu, W.; Xu, W.Z.; Charpentier, P.A. The effect of silica thickness on nano TiO2 particles for functional polyurethane nanocomposites. Nanotechnology 2017, 28, 115709. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Chen, Y.F.; Zeng, D.D.; Gao, W.M.; Wu, Z.J. Photocatalytic characterization of silica coated titania nanoparticles with tunable coatings. J. Nanopart. Res. 2005, 7, 295–299. [Google Scholar] [CrossRef]
- Paz, Y. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications. Beilstein J. Nanotechnol. 2011, 2, 845–861. [Google Scholar] [CrossRef] [Green Version]
- Flandre, D.; Nazarov, A.N.; Hemment, P.L.F. Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment: Proceedings of the NATO Advanced Research Workshop on Science and Technology of Semiconductor-On-Insulator Structures and Devices Operating in a Harsh Environment, Kiev, Ukraine, 26–30 April 2004; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Vohra, M.S.; Tanaka, K. Photocatalytic degradation of aqueous pollutants using silica-modified TiO2. Water Res. 2003, 37, 3992–3996. [Google Scholar] [CrossRef]
- Wilhelm, P.; Stephan, D. On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements. J. Colloid Interface Sci. 2006, 293, 88–92. [Google Scholar] [CrossRef]
- Kosmulski, M.; Matijević, E. Zeta potential of anatase (TiO2) in mixed solvents. Colloids Surf. 1992, 64, 57–65. [Google Scholar] [CrossRef]
- Kallay, N.; Babić, D.; Matijević, E. Adsorption at solid/solution interfaces II. Surface charge and potential of spherical colloidal titania. Colloids Surf. 1986, 19, 375–386. [Google Scholar] [CrossRef]
- Gil-Llambías, F.J.; Escudey-Castro, A.M. Use of zero point charge measurements in determining the apparent surface coverage of molybdena in MoO3/γ-Al2O3 catalysts. J. Chem. Soc. Chem. Commun. 1982, 478–479. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Controll. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Belhekar, A.A.; Awate, S.V.; Anand, R. Photocatalytic activity of titania modified mesoporous silica for pollution control. Catal. Commun. 2002, 3, 453–458. [Google Scholar] [CrossRef]
- Fidalgo, A.; Ilharco, L.M. The defect structure of sol–gel-derived silica/polytetrahydrofuran hybrid films by FTIR. J. Non-Cryst. Solids 2001, 283, 144–154. [Google Scholar] [CrossRef]
- Fischer, C.E.; Mink, J.; Hajba, L.; Bacsik, Z.; Németh, C.; Mihály, J.; Raith, A.; Cokoja, M.; Kühn, F.E. Vibrational spectroscopic study of SiO2-based nanotubes. Vib. Spectrosc. 2013, 66, 104–118. [Google Scholar] [CrossRef]
- Gao, X.; Wachs, I.E. Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal. Today 1999, 51, 233–254. [Google Scholar] [CrossRef]
- Dutoit, D.C.M.; Schneider, M.; Baiker, A. Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties. J. Catal. 1995, 153, 165–176. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, S.; Ning, P. Degradation Mechanism of Methylene Blue in a Heterogeneous Fenton-like Reaction Catalyzed by Ferrocene. Ind. Eng. Chem. Res. 2014, 53, 643–649. [Google Scholar] [CrossRef]
- Ndolomingo, M.J.; Meijboom, R. Kinetic analysis of catalytic oxidation of methylene blue over gamma-Al2O2 supported copper nanoparticles. Appl. Catal. A Gen. 2015, 506, 33–43. [Google Scholar] [CrossRef]
- Arab Chamjangali, M.; Bagherian, G.; Javid, A.; Boroumand, S.; Farzaneh, N. Synthesis of Ag–ZnO with multiple rods (multipods) morphology and its application in the simultaneous photo-catalytic degradation of methyl orange and methylene blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 150, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Kibombo, H.S.; Peng, R.; Rasalingam, S.; Koodali, R.T. Versatility of heterogeneous photocatalysis: Synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catal. Sci. Technol. 2012, 2, 1737–1766. [Google Scholar] [CrossRef]
- Li, L.; Krissanasaeranee, M.; Pattinson, S.W.; Stefik, M.; Wiesner, U.; Steiner, U.; Eder, D. Enhanced photocatalytic properties in well-ordered mesoporous WO2. Chem. Commun. 2010, 46, 7620–7622. [Google Scholar] [CrossRef] [PubMed]
- Gouamid, M.; Ouahrani, M.R.; Bensaci, M.B. Adsorption Equilibrium, Kinetics and Thermodynamics of Methylene Blue from Aqueous Solutions using Date Palm Leaves. Energy Procedia 2013, 36, 898–907. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ahn, I.S.; Lin, Y.; Huang, L.; Lan, X.; Lee, K. Methyl orange adsorption by microporous and mesoporous TiO2-SiO2 and TiO2-SiO2-Al2O2 composite xerogels. Compos. Interfaces 2004, 11, 205–212. [Google Scholar] [CrossRef]
- Bo, Z.; Ahn, S.; Ardagh, M.A.; Schweitzer, N.M.; Canlas, C.P.; Farha, O.K.; Notestein, J.M. Synthesis and stabilization of small Pt nanoparticles on TiO2 partially masked by SiO2. Appl. Catal. A Gen. 2018, 551, 122–128. [Google Scholar] [CrossRef]
- Bo, Z.; Eaton, T.R.; Gallagher, J.R.; Canlas, C.P.; Miller, J.T.; Notestein, J.M. Size-Selective Synthesis and Stabilization of Small Silver Nanoparticles on TiO2 Partially Masked by SiO2. Chem. Mater. 2015, 27, 1269–1277. [Google Scholar] [CrossRef]
- Lim, S.H.; Phonthammachai, N.; Pramana, S.S.; White, T.J. Simple Route to Monodispersed Silica-Titania Core-Shell Photocatalysts. Langmuir 2008, 24, 6226–6231. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Liu, Y.; Tian, Z.; Yang, B.; Sun, Z.; Yan, S. Adsorption-photocatalytic degradation of methyl orange over a facile one-step hydrothermally synthesized TiO2/ZnO–NH2–RGO nanocomposite. RSC Adv. 2014, 4, 48703–48711. [Google Scholar] [CrossRef]
Sample | Si:Ti [%] | TEM [] | EDX [] | [] | [] | [] |
---|---|---|---|---|---|---|
TS0 | 0 | - | 0.03 ± 0.03 | 92.6 | 92.9 | - |
TS1 | 4.3 | - | 0.1 ± 0.02 | 88.5 | 86.6 | 1.9 |
TS2 | 8.6 | - | 0.29 ± 0.02 | 80.1 | 68.4 | 11.7 |
TS3 | 12.9 | 0.63 ± 0.13 | 0.61 ± 0.03 | 81.2 | 70.6 | 10.5 |
TS4 | 16.8 | 0.84 ± 0.18 | 0.81 ± 0.04 | 54.5 | 43.0 | 11.5 |
TS5 | 21.4 | 0.97 ± 0.13 | 0.91 ± 0.09 | 74.4 | 52.1 | 22.3 |
Sample | MO Rate Constant | MB Rate Constant | ||
---|---|---|---|---|
TS0 | 1.95 | 0.99 | 1.09 | 0.99 |
TS1 | 3.21 | 0.99 | 2.59 | 0.98 |
TS2 | 4.01 | 0.99 | 13.1 | 0.99 |
TS3 | 1.59 | 0.99 | 8.18 | 0.97 |
TS4 | 2.03 | 0.99 | 9.21 | 0.99 |
TS5 | 0.75 | 0.99 | 7.15 | 0.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giesriegl, A.; Blaschke, J.; Naghdi, S.; Eder, D. Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts. Catalysts 2019, 9, 583. https://doi.org/10.3390/catal9070583
Giesriegl A, Blaschke J, Naghdi S, Eder D. Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts. Catalysts. 2019; 9(7):583. https://doi.org/10.3390/catal9070583
Chicago/Turabian StyleGiesriegl, Ariane, Jakob Blaschke, Shaghayegh Naghdi, and Dominik Eder. 2019. "Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts" Catalysts 9, no. 7: 583. https://doi.org/10.3390/catal9070583
APA StyleGiesriegl, A., Blaschke, J., Naghdi, S., & Eder, D. (2019). Rate-Limiting Steps of Dye Degradation over Titania-Silica Core-Shell Photocatalysts. Catalysts, 9(7), 583. https://doi.org/10.3390/catal9070583