Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Sulfur Adsorption Results
2.2. Characterization of the Adsorbents
2.3. Kinetic Study
2.4. Adsorption Equilibrium Isotherms
2.5. Adsorption Thermodynamics
3. Materials and Methods
3.1. Synthesis
3.2. Adsorbent Modification
3.3. Adsorbent Characterization
3.4. Real and Model Fuels
3.5. Preliminary Adsorption Tests
3.6. Batch Adsorption
3.6.1. Kinetic Tests
3.6.2. Adsorption Equilibrium Tests
3.6.3. Sulfur Adsorption Thermodynamics
3.6.4. Regeneration Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saleh, T.A.; Sulaiman, K.O.; AL-Hammadi, S.A.; Dafalla, H.; Danmaliki, G.I. Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation. J. Clean. Prod. 2017, 154, 401–412. [Google Scholar] [CrossRef]
- Pouladi, B.; Fanaei, M.A.; Baghmisheh, G. Optimization of oxidative desulfurization of gas condensate via response surface methodology approach. J. Clean. Prod. 2019, 209, 965–977. [Google Scholar] [CrossRef]
- Andevary, H.H.; Akbari, A.; Omidkhah, M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Process. Technol. 2011, 185, 8–17. [Google Scholar] [CrossRef]
- Subhan, F.; Aslam, S.; Yan, Z.; Ikram, M.; Rehman, S. Enhanced desulfurization characteristics of Cu-KIT-6 for thiophene. Microporous Mesoporous Mater. 2014, 199, 108–116. [Google Scholar] [CrossRef]
- Yang, D.; Yang, S.; Jiang, Z.; Yu, S.; Zhang, J.; Pan, F.; Cao, X.; Wang, B.; Yang, J. Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. J. Membr. Sci. 2015, 487, 152–161. [Google Scholar] [CrossRef]
- Etemadi, N.; Sepahy, A.A.; Mohebali, G.; Yazdian, F.; Omidi, M. Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 2018, 120, 1801–1809. [Google Scholar] [CrossRef]
- Song, L.; Duan, Z.; Zhu, L.; Zhou, Y.; Xiang, Y.; Xia, D. Selective functionalization of external and internal surface of MCM-41 for adsorptive desulfurization. J. Porous Mater. 2016, 23, 1181–1187. [Google Scholar] [CrossRef]
- Subhan, F.; Aslam, S.; Yan, Z.; Zhen, L.; Ikram, M.; Ullah, R.; Etim, U.J.; Ahmad, A. Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization. Chem. Eng. J. 2018, 339, 557–565. [Google Scholar] [CrossRef]
- Zhao, Z.; Zuhra, Z.; Qin, L.; Zhou, Y.; Zhang, L.; Tang, F.; Mu, C. Confinement of microporous MOF-74(Ni) within mesoporous γ-Al2O3 beads for excellent ultra-deep and selective adsorptive desulfurization performance. Fuel Process. Technol. 2018, 176, 276–282. [Google Scholar] [CrossRef]
- Aslam, S.; Subhan, F.; Yan, Z.; Xing, W.; Zeng, J.; Liu, Y.; Ikram, M.; Rehman, S.; Ullah, R. Rapid functionalization of as-synthesized KIT-6 with nickel species occluded with template for adsorptive desulfurization. Microporous Mesoporous Mater. 2015, 214, 54–63. [Google Scholar] [CrossRef]
- Teymouri, M.; Samadi-Maybodi, A.; Vahid, A.; Miranbeigi, A. Adsorptive desulfurization of low sulfur diesel using palladium containing mesoporous silica synthesized via a novel in-situ approach. Fuel Process. Technol. 2013, 116, 257–264. [Google Scholar] [CrossRef]
- Sikarwar, P.; Kumar, U.K.A.; Gosu, V.; Subbaramaiah, V. Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. J. Environ. Chem. Eng. 2018, 6, 1736–1744. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Kim, T.; Jun, S.W.; Shin, K.; Jang, Y.; Kim, B.H.; Kim, J.; Hyeon, T. Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Appl. Catal. A Gen. 2014, 476, 133–139. [Google Scholar] [CrossRef]
- Ahadi, A.; Rostamnia, S.; Panahi, P.; Wilson, L.D.; Kong, Q.; An, Z.; Shokouhimehr, M. Palladium comprising dicationic bipyridinium supported periodic mesoporous organosilica (PMO): Pd@Bipy–PMO as an efficient hybrid catalyst for Suzuki–Miyaura Cross-Coupling Reaction in Water. Catalysts 2019, 9, 140. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Hong, K.; Lee, T.H.; Moon, C.H.; Hong, S.P.; Zhang, K.; Suh, J.M.; Choi, K.S.; Varma, R.S.; Jang, H.W. Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: Efficient reduction of nitroaromatics in aqueous media. Green Chem. 2018, 20, 3809–3817. [Google Scholar] [CrossRef]
- Shokouhimehr, M.; Shin, K.Y.; Lee, J.S.; Hackett, M.J.; Jun, S.W.; Oh, M.H.; Jang, J.; Hyeon, T. Magnetically recyclable core–shell nanocatalysts for efficient heterogeneous oxidation of alcohols. J. Mater. Chem. A 2014, 2, 7593–7599. [Google Scholar] [CrossRef]
- Zhang, K.; Suh, J.M.; Choi, J.W.; Jang, H.W.; Shokouhimehr, M.; Varma, R.S. Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water. ACS Omega 2019, 4, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Shokouhimehr, M. Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 2015, 5, 534–560. [Google Scholar] [CrossRef]
- Siriworarat, K.; Deerattrakul, V.; Dittanet, P.; Kongkachuichay, P. Production of methanol from carbon dioxide using palladium-copperzinc loaded on MCM-41: Comparison of catalysts synthesized from flame spray pyrolysis and sol-gel method using silica source from rice husk ash. J. Clean. Prod. 2017, 142, 1234–1243. [Google Scholar] [CrossRef]
- Yu, H.; Xue, X.; Huang, D. Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings. Mater. Res. Bull. 2009, 44, 2112–2115. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Jafarzadeh, A.; Pourahmad, A. Synthesis and characterization of MCM-41 ropes. Mater. Lett. 2018, 212, 16–19. [Google Scholar] [CrossRef]
- Santos, L.S.; Silva, J.A.B.; Urbina, M.M.; Silva, E.G.; Andrade, J.C.F.; Silva, V.L. Processo de Produção de Sílica Proveniente da Areia de Praia. BR Patent 1020140252835, 2 August 2016. [Google Scholar]
- Carvalho, L.S.; Silva, E.; Andrade, J.C.; Silva, J.A.; Urbina, M.; Nascimento, P.F.; Carvalho, F.; Ruiz, J.A. Low-cost mesoporous adsorbents amines-impregnated for CO2 capture. Adsorption 2015, 21, 597–609. [Google Scholar] [CrossRef]
- Dutov, V.V.; Mamontov, G.V.; Zaikovskii, V.I.; Liotta, L.F.; Vodyankina, O.V. Low-temperature CO oxidation over Ag/SiO2 catalysts: Effect of OH/Ag ratio. Appl. Catal. B Environ. 2018, 221, 598–609. [Google Scholar] [CrossRef]
- Hernández-Maldonado, A.J.; Yang, F.H.; Qi, G.; Yang, R.T. Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)- zeolites. Appl. Catal. B Environ. 2005, 56, 111–126. [Google Scholar] [CrossRef]
- Tang, H.; Li, W.; Zhang, T.; Li, Q.; Xing, J.; Liu, H. Improvement in diesel desulfurization capacity by equilibrium isotherms analysis. Sep. Purif. Technol. 2011, 78, 352–356. [Google Scholar] [CrossRef]
- Hu, P.; Amghouz, Z.; Huang, Z.; Xu, F.; Chen, Y.; Tang, X. Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ. Sci. Technol. 2015, 49, 2384–2390. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, Z.; Zhou, M.; Ma, Z.; Chen, J.; Tang, X. Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement. Environ. Sci. Technol. 2017, 51, 2304–2311. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B Environ. 2010, 99, 353–363. [Google Scholar] [CrossRef]
- Losurdo, M.; Bergmair, I.; Dastmalchi, B.; Kim, T.H.; Giangregroio, M.M.; Jiao, W.; Bianco, G.V.; Brown, A.S.; Hingerl, K.; Bruno, G. Graphene as an electron shuttle for silver deoxidation: Removing a key barrier to plasmonics and metamaterials for SERS in the visible. Adv. Funct. Mater. 2014, 24, 1864–1878. [Google Scholar] [CrossRef]
- Dutov, V.V.; Mamontov, G.V.; Zaikovskii, V.I.; Vodyankina, O.V. The effect of support pretreatment on activity of Ag/SiO2 catalysts in low-temperature CO oxidation. Catal. Today 2016, 278, 150–156. [Google Scholar] [CrossRef]
- Padin, J.; Yang, R.T. New sorbents for olefin/paraffin separations by adsorption via π-complexation: Synthesis and effects of substrates. Chem. Eng. Sci. 2000, 55, 2607–2616. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartulli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Borcuch, A.; Michalik, M.; Rutkowska, M.; Gil, B.; Sojka, Z.; Indyka, P.; Chmielarz, L. MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous Mesoporous Mater. 2017, 240, 9–21. [Google Scholar] [CrossRef]
- Qin, J.; Li, B.; Zhang, W.; Lv, W.; Han, C.; Liu, J. Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel content. Microporous Mesoporous Mater. 2015, 208, 181–187. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Carraro, P.M.; Blanco, A.A.G.; Soria, F.A.; Lener, G.; Sapag, K.; Eimer, G.A.; Oliva, M.I. Understanding the role of nickel on the hydrogen storage capacity of Ni/MCM-41 materials. Microporous Mesoporous Mater. 2016, 231, 31–39. [Google Scholar] [CrossRef]
- Shen, S.; Chen, J.; Koodali, R.T.; Hu, Y.; Xiao, Q.; Zhou, J.; Wang, X.; Guo, L. Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Appl. Catal. B Environ. 2014, 150, 138–146. [Google Scholar] [CrossRef]
- Hoflund, G.B.; Weaver, J.F.; Epling, W.S. AgO XPS Spectra. Surf. Sci. Spectra 1995, 3, 163–168. [Google Scholar] [CrossRef]
- Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. 2012, 124, 4274–4279. [Google Scholar] [CrossRef]
- Cao, Y.; Dai, W.L.; Deng, J.F. The oxidative dehydrogenation of methanol over a novel Ag/SiO2 catalyst. Appl. Catal. A Gen. 1997, 158, L27–L34. [Google Scholar] [CrossRef]
- Yang, R.T. Adsorbents: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Battocchio, C.; Meneghini, C.; Fratoddi, I.; Venditti, I.; Russo, M.V.; Aquilanti, G.; Maurizio, C.; Bondino, F.; Matassa, R.; Rossi, M.; et al. Silver nanoparticles stabilized with thiols: A close look at the local chemistry and chemical structure. J. Phys. Chem. C 2012, 116, 19571–19578. [Google Scholar] [CrossRef]
- Brobbey, K.J.; Haapanen, J.; Gunell, M.; Toivakka, M.; Mäkelä, J.M.; Eerola, E.; Ali, R.; Saleem, M.R.; Honkanen, S.; Bobacka, J.; et al. Controlled time release and leaching of silver nanoparticles using a thin immobilizing layer of aluminum oxide. Thin Solid Films 2018, 645, 166–172. [Google Scholar] [CrossRef]
- Haro, N.K.; Vecchio, P.D.; Marcilio, N.R.; Féris, L.A. Removal of atenolol by adsorption—Study of kinetics and equilibrium. J. Clean. Prod. 2017, 154, 214–219. [Google Scholar] [CrossRef]
- Habibi, A.; Belaroui, L.S.; Bengueddach, A.; Galindo, A.L.; Díaz, C.I.S.; Peña, A. Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin. Microporous Mesoporous Mater. 2018, 268, 293–302. [Google Scholar] [CrossRef]
- Choi, A.E.S.; Roces, S.; Dugos, N.; Arcega, A.; Wan, M. Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents. J. Clean. Prod. 2017, 161, 267–276. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo second-order model for sorption process. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Jeon, H.J.; Ko, C.H.; Kim, S.H.; Kim, J.N. Removal of Refractory Sulfur Compounds in Diesel Using Activated Carbon with Controlled Porosity. Energy Fuels 2009, 23, 2537–2543. [Google Scholar] [CrossRef]
- Bu, J.; Loh, G.; Gwie, C.G.; Dewiyanti, S.; Tasrif, M.; Borgna, A. Desulfurization of diesel fuels by selective adsorption on activated carbons: Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons. Chem. Eng. J. 2011, 166, 207–217. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Silva, M.G.C.; Vieira, M.G.A. Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified Verde-lodo bentonite. Appl. Clay Sci. 2019, 168, 366–373. [Google Scholar] [CrossRef]
- Meng, C.; Fang, Y.; Jin, L.; Hu, H. Deep desulfurization of model gasoline by selective adsorption on Ag+/Al-MSU-S. Catal. Today 2010, 149, 138–142. [Google Scholar] [CrossRef]
- Muzic, M.; Sertic-Bionda, K.; Gomzi, Z.; Podolski, S.; Telen, S. Study of diesel fuel desulfurization by adsorption. Chem. Eng. Res. Des. 2010, 88, 487–495. [Google Scholar] [CrossRef]
- Adelodun, A.A.; Ngila, J.C.; Kim, D.; Jo, Y.M. Isotherm, thermodynamic and kinetic studies of selective CO2 adsorption on chemically modified carbon surfaces. Aerosol Air Qual. Res. 2016, 16, 3312–3329. [Google Scholar] [CrossRef]
- Raganati, F.; Alfe, M.; Gargiulo, V.; Chirone, R.; Ammendola, P. Isotherms and thermodynamics of CO2 adsorptionon a novel carbon-magnetite composite sorbent. Chem. Eng. Res. Des. 2018, 134, 540–552. [Google Scholar] [CrossRef]
- Ben-Ali, S.; Jaouali, I.; Souissi-Najar, S.; Ouederni, A. Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J. Clean. Prod. 2017, 142, 3809–3821. [Google Scholar] [CrossRef]
- Sales, R.V.; Moura, H.O.M.A.; Silva, S.R.B.; Souza, M.A.F.; Campos, L.M.A.; Rodriguez-Castellon, E.; Carvalho, L.S. Experimental and theoretical study of adsorptive interactions in diesel fuel desulfurization over Ag/MCM-41 adsorbent. Adsorption 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Reichenberg, D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 1953, 75, 589–597. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Freundlich, H. Über die adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Pérez-Marín, A.B.; Zapata, V.M.; Ortuño, J.F.; Aguilar, M.; Sáez, J.; Lloréns, M. Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater. B 2007, 139, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Dubinin, M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Al-Anber, M.A. Thermodynamics approach in the adsorption of heavy metals. In Thermodynamics—Interaction Studies—Solids, Liquids and Gases; Moreno-Pirajan, J.C., Ed.; InTech: Rijeka, Croatia, 2011; pp. 737–764. [Google Scholar]
Adsorbent | SBET 1 (m2/g) | VP 2 (cm3/g) | Maximun Pore Diameter (Å) |
---|---|---|---|
MCM-41M | 722 | 0.79 | 23.54 |
AgNO3/MCM-41M | 656 | 0.74 | 24.82 |
Ag2O/MCM-41M | 704 | 0.71 | 20.20 |
Ni(NO3)2/MCM-41M | 641 | 0.57 | 24.70 |
NiO/MCM-41M | 703 | 0.71 | 24.75 |
Samples | Atomic Concentrations (%) | Molar Ratios | After Desulfurization (%) | |||||
---|---|---|---|---|---|---|---|---|
C 1s | O 1s | Si 2p | Ag 3d | Ni 2p | Si/Ag | Si/Ni | S 2p | |
MCM-41M | 2.24 | 69.59 | 28.18 | |||||
AgNO3/MCM-41M | 1.94 | 68.05 | 29.34 | 0.67 | 43.79 | 1.87 | ||
Ag2O/MCM-41M | 5.66 | 64.58 | 29.43 | 0.32 | 91.97 | 1.78 | ||
Ni(NO3)2/MCM-41M | 4.75 | 66.27 | 26.38 | 0.54 | 48.85 | 1.62 | ||
NiO/MCM-41M | 3.75 | 67.10 | 26.94 | 0.56 | 48.10 | 1.64 |
Adsorbent | qe, exp (mg/g) | Pseudo-First Order | Pseudo-Second Order | ||||||||
k1 (min−1) | qe, cal (mg/g) | R2 | k2 (g/(mg min)) | qe, cal (mg/g) | R2 | ||||||
AgNO3/MCM-41M | 7.26 | 0.005 | 2.05 | 0.814 | 0.010 | 7.31 | 0.998 | ||||
MCM-41M | 1.64 | 0.002 | 0.79 | 0.516 | 0.013 | 1.60 | 0.890 | ||||
Adsorbent | Elovich Model | Intraparticle Diffusion | Boyd | ||||||||
α (mg/g min) | β (g/mg) | R2 | kid (mg/(g min)) | C (mg/g) | R2 | B1 | R2 | ||||
AgNO3/MCM-41M | 45.257 | 1.426 | 0.977 | 0.126 | 4.654 | 0.894 | 0.007 | 0.977 | |||
MCM-41M | 0.786 | 5.432 | 0.710 | 0.034 | 0.709 | 0.691 | 0.771 | 0.710 |
(a) Adsorbents Obtained from MPI Silica | ||||||
Isotherm | Parameter | Adsorbent | ||||
AgNO3/MCM-41M | Ag2O/MCM-41M | Ni(NO3)2/MCM-41M | NiO/MCM-41M | MCM-41M | ||
Langmuir | KL (L/mg) | 0.0013 | 0.0025 | 0.0005 | 0.0009 | 0.0028 |
qm (mg/g) | 31.25 | 13.95 | 8.97 | 5.38 | 3.06 | |
R2 | 0.9888 | 0.9973 | 0.9954 | 0.9969 | 0.9802 | |
Freundlich | KF | 0.0812 | 0.0823 | 0.0084 | 0.0106 | 0.0213 |
n | 1.27 | 1.35 | 1.16 | 1.25 | 1.37 | |
R2 | 0.9719 | 0.9633 | 0.9461 | 0.9215 | 0.9904 | |
Temkin | α | 0.062 | 0.063 | 0.034 | 0.044 | 0.024 |
B | 2.457 | 2.006 | 0.658 | 0.482 | 0.863 | |
R2 | 0.9249 | 0.9267 | 0.8343 | 0.8919 | 0.8575 | |
D-R | qs | 302.808 | 115.492 | 4.214 | 3.369 | 3.777 |
B | 0.0002 | 0.0001 | 0.0001 | 0.00009 | 0.0004 | |
E | 50.000 | 70.711 | 70.711 | 74.535 | 35.355 | |
R2 | 0.4471 | 0.3171 | 0.3432 | 0.4556 | 0.4632 | |
(b) Adsorbents Obtained from Commercial Silica | ||||||
Isotherm | Parameter | Adsorbent | ||||
AgNO3/MCM-41C | Ni(NO3)2/MCM-41C | MCM-41C | ||||
Langmuir | KL (L/mg) | 0.0025 | 0.0035 | 0.0051 | ||
qm (mg/g) | 15.41 | 9.51 | 7.25 | |||
R2 | 0.9941 | 0.9916 | 0.9814 | |||
Freundlich | KF | 0.0757 | 0.0511 | 0.0516 | ||
n | 1.31 | 1.20 | 1.19 | |||
R2 | 0.9827 | 0.9924 | 0.9925 | |||
Temkin | α | 0.082 | 0.067 | 0.068 | ||
B | 1.599 | 1.694 | 1.761 | |||
R2 | 0.9553 | 0.9324 | 0.9238 | |||
D-R | qs | 34.046 | 28.994 | 30.883 | ||
B | 0.0001 | 0.0001 | 0.00009 | |||
E | 70.711 | 70.711 | 74.536 | |||
R2 | 0.4745 | 0.3969 | 0.3705 |
Adsorbent | T (K) | KL (L/g) 1 | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (kJ/K mol) |
---|---|---|---|---|---|
AgNO3/MCM-41M | 298 | 1.94 × 10−3 | 15.528 | 42.161 | 0.089 |
308 | 3.13 × 10−3 | 14.634 | |||
318 | 5.69 × 10−3 | 13.740 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
V. Sales, R.; Moura, H.O.M.A.; Câmara, A.B.F.; Rodríguez-Castellón, E.; Silva, J.A.B.; Pergher, S.B.C.; Campos, L.M.A.; Urbina, M.M.; Bicudo, T.C.; de Carvalho, L.S. Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel. Catalysts 2019, 9, 651. https://doi.org/10.3390/catal9080651
V. Sales R, Moura HOMA, Câmara ABF, Rodríguez-Castellón E, Silva JAB, Pergher SBC, Campos LMA, Urbina MM, Bicudo TC, de Carvalho LS. Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel. Catalysts. 2019; 9(8):651. https://doi.org/10.3390/catal9080651
Chicago/Turabian StyleV. Sales, Rafael, Heloise O. M. A. Moura, Anne B. F. Câmara, Enrique Rodríguez-Castellón, José A. B. Silva, Sibele B. C. Pergher, Leila M. A. Campos, Maritza M. Urbina, Tatiana C. Bicudo, and Luciene S. de Carvalho. 2019. "Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel" Catalysts 9, no. 8: 651. https://doi.org/10.3390/catal9080651
APA StyleV. Sales, R., Moura, H. O. M. A., Câmara, A. B. F., Rodríguez-Castellón, E., Silva, J. A. B., Pergher, S. B. C., Campos, L. M. A., Urbina, M. M., Bicudo, T. C., & de Carvalho, L. S. (2019). Assessment of Ag Nanoparticles Interaction over Low-Cost Mesoporous Silica in Deep Desulfurization of Diesel. Catalysts, 9(8), 651. https://doi.org/10.3390/catal9080651