A Novel Porous Ceramic Membrane Supported Monolithic Cu-Doped Mn–Ce Catalysts for Benzene Combustion
Abstract
:1. Introduction
2. Results
Catalytic Activity for Benzene Combustion
3. Discussion
3.1. Phase Characterization and Textural Properties
3.2. N2 Adsorption–Desorption Analysis
3.3. X-ray Photoelectron Spectra
3.4. H2-TPR Analysis
3.5. Proposed Benzene Oxidation Mechanism
4. Materials and Methods
4.1. Preparation of PCMs and Catalytic PCMs
4.2. Characterization of PCMs and Catalytic PCMs
4.3. Catalytic Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zou, B.B.; Huang, X.F.; Zhang, B.; Dai, J.; Zeng, L.W.; Feng, N.; He, L.Y. Source apportionment of PM2.5 pollution in an industrial city in southern China. Atmos. Pollut. Res. 2017. [Google Scholar] [CrossRef]
- He, Z.; Li, G.; Chen, J.; Huang, Y.; An, T.; Zhang, C. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environ. Int. 2015, 77, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, N.; Dai, Q.; Mei, R.; Sui, B.; Bi, X.; Feng, Y. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmos. Res. 2016, 170, 23–33. [Google Scholar] [CrossRef]
- Ma, Q.; Cai, S.; Wang, S.; Zhao, B.; Martin, R.V.; Brauer, M.; Cohen, A.; Jiang, J.; Zhou, W.; Hao, J.; et al. Impacts of coal burning on ambient PM2.5 pollution in China. Atmos. Chem. Phys. 2017, 17, 4477–4491. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A review of indoor air treatment technologies. Rev. Environ. Sci. Bio. Technol. 2015, 14, 499–522. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Zhang, F.; Low, Z.X.; Zhong, Z.; Xing, W. Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue. J. Membr. Sci. 2017, 541, 500–509. [Google Scholar] [CrossRef]
- Lupion, M.; Alonso-Fariñas, B.; Rodriguez-Galan, M.; Navarrete, B. Modelling pressure drop evolution on high temperature filters. Chem. Eng. Process. Process Intensif. 2013, 66, 12–19. [Google Scholar] [CrossRef]
- Karmakar, M.K.; Chandra, P.; Chatterjee, P.K. A review on the fuel gas cleaning technologies in gasification process. J. Environ. Chem. Eng. 2015, 3, 689–702. [Google Scholar] [CrossRef]
- Das, B.; Chakrabarty, B.; Barkakati, P. Preparation and characterization of novel ceramic membranes for micro-filtration applications. Ceram. Int. 2016, 42, 14326–14333. [Google Scholar] [CrossRef]
- Cuo, Z.; Liu, H.; Zhao, F.; Li, W.; Peng, S.; Chen, Y. Highly porous fibrous mullite ceramic membrane with interconnected pores for high performance dust removal. Ceram. Int. 2018. [Google Scholar] [CrossRef]
- Cuo, Z.; Zhang, J.; Yu, B.; Peng, S.; Liu, H.; Chen, Y. Spherical Al2O3-coated mullite fibrous ceramic membrane and its applications to high-efficiency gas filtration. Sep. Purif. Technol. 2019, 215, 368–377. [Google Scholar] [CrossRef]
- Tomatis, M.; Xu, H.-H.; He, J.; Zhang, X.-D. Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review. J. Chem. 2016, 2016, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jiang, Z.; Shangguan, W. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278. [Google Scholar] [CrossRef]
- Yao, X.; Tang, C.; Gao, F.; Dong, L. Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts. Catal. Sci. Technol. 2014, 4, 2814. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhang, Y.; Lu, S.; Huang, Z.; Huang, X.; Wang, Y. Ambient air benzene at background sites in China’s most developed coastal regions: Exposure levels, source implications and health risks. Sci. Total Environ. 2015, 511, 792–800. [Google Scholar] [CrossRef]
- Li, W.B.; Wang, J.X.; Gong, H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009, 148, 81–87. [Google Scholar] [CrossRef]
- Lahousse, C.; Bernier, A.; Grange, P.; Delmon, B.; Papaefthimiou, P.; Ioannides, T.; Verykios, X. Evaluation of gamma-MnO2 as a VOC removal catalyst: Comparison with a noble metal catalyst. J. Catal. 1998, 178, 214–225. [Google Scholar] [CrossRef]
- Cuo, Z.; Deng, Y.; Li, W.; Peng, S.; Zhao, F.; Liu, H.; Chen, Y. Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene. Appl. Surf. Sci. 2018, 456, 594–601. [Google Scholar] [CrossRef]
- Wang, X.; Kang, Q.; Li, D. Low-temperature catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Catal. Commun. 2008, 9, 2158–2162. [Google Scholar] [CrossRef]
- Mo, S.; Li, S.; Li, J.; Peng, S.; Chen, J.; Chen, Y. Promotional effects of Ce on the activity of MnAl oxide catalysts derived from hydrotalcites for low temperature benzene oxidation. Catal. Commun. 2016, 87, 102–105. [Google Scholar] [CrossRef]
- Yi, H.; Huang, Y.; Tang, X.; Zhao, S.; Gao, F.; Wang, J.; Yang, Z. Improving the Efficiency of Mn-CeOx/Cordierite Catalysts for Nonmethane Hydrocarbon Oxidation in Cooking Oil Fumes. Ind. Eng. Chem. Res. 2018, 57, 4186–4194. [Google Scholar] [CrossRef]
- Kim, S.C.; Shim, W.G. Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. Environ. 2010, 98, 180–185. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Deng, Y.; Wu, X.; Han, N.; Chen, Y. Effective Ti Doping of δ-MnO2 via Anion Route for Highly Active Catalytic Combustion of Benzene. J. Phys. Chem. 2016, 120, 10275–10282. [Google Scholar] [CrossRef]
- Tang, W.; Yao, M.; Deng, Y.; Li, X.; Han, N.; Wu, X.; Chen, Y. Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: A heterogeneous interface for remarkably promoting catalytic oxidation activity. Chem. Eng. J. 2016, 306, 709–718. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic Properties of Ceria and CeO2-Containing Materials. Catal. Rev. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Qiao, Z.; Wu, Z.; Dai, S. Shape-Controlled Ceria-based Nanostructures for Catalysis Applications. ChemSusChem. 2013, 6, 1821–1833. [Google Scholar] [CrossRef]
- Deng, L.; Ding, Y.; Duan, B.; Chen, Y.; Li, P.; Zhu, S.; Shen, S. Catalytic deep combustion characteristics of benzene over cobalt doped Mn-Ce solid solution catalysts at lower temperatures. Mol. Catal. 2018, 446, 72–80. [Google Scholar] [CrossRef]
- Kan, J.; Deng, L.; Li, B.; Huang, Q.; Zhu, S.; Shen, S.; Chen, Y. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation. Appl. Catal. Gen. 2017, 530, 21–29. [Google Scholar] [CrossRef]
- Azalim, S.; Brahmi, R.; Agunaou, M.; Beaurain, A.; Giraudon, J.M.; Lamonier, J.F. Washcoating of cordierite honeycomb with Ce–Zr–Mn mixed oxides for VOC catalytic oxidation. Chem. Eng. J. 2013, 223, 536–546. [Google Scholar] [CrossRef]
- Bilal, Y.; Nasir, M.A.; Nasreen, S.; Akhter, N.; Pasha, R.A.; Noor, M.F. Synthesis and Activity Evaluation of Ce-Mn-Cu Mixed Oxide Catalyst for Selective Oxidation of CO in Automobile Engine Exhaust: Effect of Ce/Mn Loading Content on Catalytic Activity. Adv. Sci. Technol. Res. J. 2018, 12, 260–266. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Yu, Y.; Shi, J.; Shen, Q.; Chen, J.; Liu, H. Mesostructured Cu–Mn–Ce–O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course. Mater. Chem. Phys. 2015, 157, 87–100. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D. Ceramic monolith supported Mn–Ce–M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation. Ceram. Int. 2016, 42, 16563–16570. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Andana, T.; Russo, N.; Pirone, R.; Fino, D. Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: From powder catalysts to structured reactors. Appl. Catal. Environ. 2017, 205, 455–468. [Google Scholar] [CrossRef]
- Ye, Z.; Giraudon, J.M.; Nuns, N.; Simon, P.; De Geyter, N.; Morent, R.; Lamonier, J.F. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Appl. Catal. Environ. 2018, 223, 154–166. [Google Scholar] [CrossRef]
- Avila, P.; Montes, M.; Miró, E.E. Monolithic reactors for environmental applications. Chem. Eng. J. 2005, 109, 11–36. [Google Scholar] [CrossRef]
- Govender, S.; Friedrich, H. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts 2017, 7, 62. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Yang, K.; Tang, W.; Liu, H.; Yang, J.; Yue, R.; Chen, Y. Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1−xCexMnO3 catalysts. Particuology 2015, 19, 60–68. [Google Scholar] [CrossRef]
- Mo, S.; Li, S.; Li, W.; Li, J.; Chen, J.; Chen, Y. Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. J. Mater. Chem. 2016, 4, 8113–8122. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, G.; Li, J.; Liu, H.; Wang, Q.; Chen, Y. Catalytic removal of benz01ene over CeO2–MnOx composite oxides prepared by hydrothermal method. Appl. Catal. Environ. 2013, 138–139, 253–259. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Q.; Qiu, C.; Lin, T.; Gong, M.; Chen, Y. Tungsten modified MnOx–CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chem. Eng. Sci. 2012, 76, 120–128. [Google Scholar] [CrossRef]
- Tang, W.; Wu, X.; Li, S.; Shan, X.; Liu, G.; Chen, Y. Co-nanocasting synthesis of mesoporous Cu–Mn composite oxides and their promoted catalytic activities for gaseous benzene removal. Appl. Catal. Environ. 2015, 162, 110–121. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Li, S.; Zhang, L.; Zheng, G.; Guo, L. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem. Eng. J. 2019, 357, 258–268. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Li, L.; Kan, J.; He, S.; Yang, B.; Shen, S.; Zhu, S. Reaction kinetics and mechanism of benzene combustion over the NiMnO3/CeO2/Cordierite catalyst. J. Mol. Catal. A Chem. 2016, 415, 160–167. [Google Scholar] [CrossRef]
- He, C.; Liu, X.; Shi, J.; Ma, C.; Pan, H.; Li, G. Anionic starch-induced Cu-based composite with flake-like mesostructure for gas-phase propanal efficient removal. J. Colloid Interface Sci. 2015, 454, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Li, S.; Wu, X.; Yue, R.; Li, W.; Chen, Y. Synergetic effect over flame-made manganese doped CuO–CeO2 nanocatalyst for enhanced CO oxidation performance. RSC Adv. 2019, 9, 2343–2352. [Google Scholar] [CrossRef]
- Delimaris, D.; Ioannides, T. VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method. Appl. Catal. Environ. 2009, 89, 295–302. [Google Scholar] [CrossRef]
- Kondrat, S.A.; Davies, T.E.; Zu, Z.; Boldrin, P.; Bartley, J.K.; Carley, A.F.; Taylor, S.H.; Rosseinsky, M.J.; Hutchings, G.J. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. J. Catal. 2011, 281, 279–289. [Google Scholar] [CrossRef]
- He, C.; Yu, Y.; Shen, Q.; Chen, J.; Qiao, N. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Appl. Surf. Sci. 2014, 297, 59–69. [Google Scholar] [CrossRef]
- Aguilera, D.A.; Perez, A.; Molina, R.; Moreno, S. Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl. Catal. Environ. 2011, 104, 144–150. [Google Scholar] [CrossRef]
Catalysts | BET (m2/g) | Total Pore Volume Dv (cc/g) | Average Pore Size Dp (nm) | T50 (°C) | T90 (°C) | Ce3+/(Ce3++Ce4+) | Mn4+/Mn3+ | (Oads.)/O | H2 Consumption (mmol/g) |
---|---|---|---|---|---|---|---|---|---|
Mn0.75Ce0.25/PCMs | 22.1 | 0.089 | 6.08 | 165 | 246 | 0.153 | 0.858 | 1.119 | 1.285 |
Mn0.7Ce0.2Cu0.1/PCMs | 29.7 | 0.091 | 6.18 | 135 | 230 | 0.196 | 0.903 | 1.958 | 1.902 |
Mn0.6Ce0.2Cu0.2/PCM | 29.5 | 0.084 | 7.58 | 130 | 212 | 0.225 | 1.177 | 2.201 | 1.974 |
Mn0.5Ce0.2Cu0.3/PCMs | 14.0 | 0.070 | 9.67 | 185 | 260 | 0.204 | 0.860 | 1.146 | 1.733 |
Mn0.4Ce0.2Cu0.4/PCMs | 13.5 | 0.066 | 9.73 | 195 | 276 | 0.196 | 0.788 | 1.051 | 1.503 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuo, Z.; Wang, D.; Gong, Y.; Zhao, F.; Liu, H.; Chen, Y. A Novel Porous Ceramic Membrane Supported Monolithic Cu-Doped Mn–Ce Catalysts for Benzene Combustion. Catalysts 2019, 9, 652. https://doi.org/10.3390/catal9080652
Cuo Z, Wang D, Gong Y, Zhao F, Liu H, Chen Y. A Novel Porous Ceramic Membrane Supported Monolithic Cu-Doped Mn–Ce Catalysts for Benzene Combustion. Catalysts. 2019; 9(8):652. https://doi.org/10.3390/catal9080652
Chicago/Turabian StyleCuo, Zhaxi, Dongdong Wang, Yan Gong, Feng Zhao, Haidi Liu, and Yunfa Chen. 2019. "A Novel Porous Ceramic Membrane Supported Monolithic Cu-Doped Mn–Ce Catalysts for Benzene Combustion" Catalysts 9, no. 8: 652. https://doi.org/10.3390/catal9080652
APA StyleCuo, Z., Wang, D., Gong, Y., Zhao, F., Liu, H., & Chen, Y. (2019). A Novel Porous Ceramic Membrane Supported Monolithic Cu-Doped Mn–Ce Catalysts for Benzene Combustion. Catalysts, 9(8), 652. https://doi.org/10.3390/catal9080652