High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release
Abstract
:1. Introduction
2. Results and Discussions
2.1. XRD Analysis
2.2. SEM Analysis
2.3. N2 Adsorption-Desorption Characterization
2.4. XPS and H2-TPR Characterization
2.5. NOx Adsorption and Desorption Behavior
2.6. In Situ DRIFTS Spectra
2.7. NOx Lean-Rich Cycling Performance
2.8. The Influence of CO2, Soot, H2O, and SO2
3. Experimental
3.1. Preparation of Catalysts
3.2. Catalysts Characterization
3.3. NOx Storage and Desorption Measurements
3.4. In Situ DRIFTS Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, P.; Yi, J.; Gu, W.; Luo, P.; Lei, L. The influence of xMnyCe/γ-Al2O3 on NOx catalysts on the properties of NOx storage and reduction over Pt-Ce-Ba/γ-Al2O3 catalysts. Chem. Eng. J. 2017, 325, 700–707. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, C.; Bai, Z.; Li, M.; Chen, B.; Crocker, M. Low temperature H2-plasma assisted NOx storage and reduction over the combined Pt/Ba/Al and LaMnFe catalyst. Catal. Sci. Technol. 2017, 7, 145–158. [Google Scholar] [CrossRef]
- Ting, A.W.-L.; Harold, M.P.; Balakotaiah, V. Elucidating the mechanism of fast cycling NOx storage and reduction using C3H6 and H2 as reductants. Chem. Eng. Sci. 2018, 189, 413–421. [Google Scholar] [CrossRef]
- Yang, R.; Cui, Y.; Yan, Q.; Zhang, C.; Qiu, L.; O’Hare, D.; Wang, Q. Design of highly efficient NOx storage-reduction catalysts from layered double hydroxides for NOx emission control from naphtha cracker flue gases. Chem. Eng. J. 2017, 326, 656–666. [Google Scholar] [CrossRef]
- Bai, Z.F.; Chen, B.B.; Yu, L.M.; Zhao, Q.; Crocker, M.; Shi, C. The function of Pt in plasma-assisted NOx storage and reduction. Catal. Commun. 2017, 102, 81–84. [Google Scholar] [CrossRef]
- Szailer, T.; Kwak, J.H.; Kim, D.H.; Hanson, J.C.; Peden, C.H.F.; Szanyi, J. Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO. J. Catal. 2015, 239, 51–64. [Google Scholar] [CrossRef]
- Su, Y.; Kabin, K.S.; Harold, M.P.; Amiridis, M.D. Reactor and in situ FTIR studies of Pt/BaO/Al2O3 and Pd/BaO/Al2O3 NOx storage and reduction (NSR) catalysts. Appl. Catal. B Environ. 2007, 71, 207–215. [Google Scholar] [CrossRef]
- Kumar, A.; Harold, M.P.; Balakotaiah, V. Isotopic studies of NOX storage and reduction on Pt/BaO/Al2O3 catalyst using temporal analysis of products. J. Catal. 2010, 270, 214–223. [Google Scholar] [CrossRef]
- Mulla, S.; Chaugule, S.; Yezerets, A.; Currier, N.; Delgass, W.; Ribeiro, F.; Ribeiro, F. Regeneration mechanism of Pt/BaO/Al2O3 lean NOx trap catalyst with H2. Catal. Today 2008, 136, 136–145. [Google Scholar] [CrossRef]
- Amberntsson, A.; Fridell, E.; Skoglundh, M. Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst. Appl. Catal. B Environ. 2003, 46, 429–439. [Google Scholar] [CrossRef]
- Piacentini, M.; Strobel, R.; Maciejewski, M.; Pratsinis, S.; Baiker, A. Flame-made Pt–Ba/Al2O3 catalysts: Structural properties and behavior in lean-NOx storage-reduction. J. Catal. 2006, 243, 43–56. [Google Scholar] [CrossRef]
- Basile, F.; Fornasari, G.; Grimandi, A.; Livi, M.; Vaccari, A. Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction. Appl. Catal. B Environ. 2006, 69, 58–64. [Google Scholar] [CrossRef]
- Iizuka, H.; Kaneeda, M.; Shinotsuka, N.; Kuroda, O.; Higashiyama, K.; Miyamoto, A. Improvement in heat resistance of NOx trap catalyst using Ti–Na binary metal oxide as NOx trap material. Appl. Catal. B Environ. 2010, 95, 320–326. [Google Scholar] [CrossRef]
- Takahashi, N.; Suda, A.; Hachisuka, I.; Sugiura, M.; Sobukawa, H.; Shinjoh, H. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides. Appl. Catal. B Environ. 2007, 72, 187–195. [Google Scholar] [CrossRef]
- Park, S.M.; Park, J.W.; Ha, H.-P.; Han, H.-S.; Seo, G. Storage of NO2 on potassium oxide co-loaded with barium oxide for NOx storage and reduction (NSR) catalysts. J. Mol. Catal. A Chem. 2007, 273, 64–72. [Google Scholar] [CrossRef]
- Wu, X.; Si, Z.; Li, G.; Weng, D.; Ma, Z. Effects of cerium and vanadium on the activity and selectivity of MnOx-TiO2 catalyst for low-temperature NH3-SCR. J. Rare Earths 2011, 29, 64–68. [Google Scholar] [CrossRef]
- Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J. Hazard. Mater. 2011, 188, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Li, W. NO oxidation to NO2 over manganese-cerium mixed oxides. Catal. Today 2015, 258, 205–213. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Chen, B.B.; Wang, X.K.; Xu, L.; Au, C.; Shi, C.; Crocker, M. NOx storage and reduction properties of model manganese-based lean NOx trap catalysts. Appl. Catal. B Environ. 2015, 165, 232–244. [Google Scholar] [CrossRef]
- Le Phuc, N.; Courtois, X.; Can, F.; Royer, S.; Marecot, P.; Duprez, D. NOx removal efficiency and ammonia selectivity during the NOx storage-reduction process over Pt/BaO(Fe, Mn, Ce)/Al2O3 model catalysts. Part II: Influence of Ce and Mn–Ce addition. Appl. Catal. B Environ. 2011, 102, 362–371. [Google Scholar] [CrossRef]
- Xiao, J.H.; Li, X.H.; Deng, S.F.; Wang, R.; Wang, L.F. NOx storage-reduction over combined catalyst Mn/Ba/Al2O3–Pt/Ba/Al2O3. Catal. Commun. 2008, 9, 563–567. [Google Scholar] [CrossRef]
- Li, Q.; Meng, M.; Xian, H.; Tsubaki, N.; Li, X.; Xie, Y.; Hu, T.; Zhang, J. Hydrotalcite-Derived MnxMg3−xAlO Catalysts Used for Soot Combustion, NOx Storage and Simultaneous Soot-NOx Removal. Environ. Sci. Technol. 2010, 44, 4747–4752. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xian, H.; Li, Q.-F.; Chen, D.; Tan, Y.-S.; Zhang, J.; Zheng, L.-R.; Li, X.-G. NO adsorption behaviors of the MnOx catalysts in lean-burn atmospheres. J. Hazard. Mater. 2013, 260, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx. Chem. Mater. 2000, 12, 3158–3164. [Google Scholar] [CrossRef]
- Machida, M. NOx-Sorbing Metal Oxides, MnOx–CeO2. Oxidative NO Adsorption and NOx–H2 Reaction. Catal. Surv. Jpn. 2002, 5, 91–102. [Google Scholar] [CrossRef]
- Huang, H.Y.; Yang, R.T. Removal of NO by Reversible Adsorption on Fe−Mn Based Transition Metal Oxides. Langmuir 2001, 17, 4997–5003. [Google Scholar] [CrossRef]
- Sun, X.X.; Qu, R.Y.; Lei, Y.; Bai, B.Y.; Chang, H.Z.; Peng, Y.; Su, W.K.; Zhang, C.Z.; Li, J.H. Lean NOXX–SnO2–CeO2 catalyst at low temperatures. Catal. Today 2015, 258, 556–563. [Google Scholar] [CrossRef]
- Guo, L.H.; Guo, L.D.; Zhao, Y.Z.; Gao, N.; Tian, Y.; Ding, T.; Zhang, J.; Zheng, L.R.; Li, X.G. Oxidizing, trapping and releasing NOx over model manganese oxides in alternative lean-burn/fuel-rich atmospheres at low temperatures. Catal. Today 2017, 297, 27–35. [Google Scholar] [CrossRef]
- Zeng, X.; Huo, X.; Zhu, T.; Hong, X.; Sun, Y. Catalytic Oxidation of NO over MnOx–CeO2 and MnOx–TiO2 Catalysts. Molecule 2016, 21, 1491. [Google Scholar] [CrossRef]
- Jabłońska, M.; Palomares, A.E.; Chmielarz, L. NOx storage/reduction catalysts based on Mg/Zn/Al/Fe hydrotalcite-like materials. Chem. Eng. J. 2013, 231, 273–280. [Google Scholar] [CrossRef]
- Yu, J.J.; Cheng, J.; Ma, C.Y.; Wang, H.L.; Li, L.D.; Hao, Z.P.; Xu, Z.P. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. J. Colloid Interface Sci. 2009, 333, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Jiang, Z.; Zhu, L.; Hao, Z.P.; Xu, Z.P. Adsorption/Desorption studies of NOx on well-mixed oxides derived from Co−Mg/Al hydrotalcite-like compounds. J. Phys. Chem. B 2006, 110, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Arena, G.E.; Perathoner, S. Nanostructured catalysts for NOx storage–reduction and N2O decomposition. J. Catal. 2003, 216, 443–454. [Google Scholar] [CrossRef]
- Luo, J.-Y.; Meng, M.; Zha, Y.-Q.; Xie, Y.-N.; Hu, T.-D.; Zhang, J.; Liu, T. A comparative study of Pt/Ba/Al2O3 and Pt/Fe-Ba/Al2O3 NSR catalysts: New insights into the interaction of Pt–Ba and the function of Fe. Appl. Catal. B Environ. 2008, 78, 38–52. [Google Scholar] [CrossRef]
- Vijay, R.; Hendershot, R.J.; Rivera-Jiménez, S.M.; Rogers, W.B.; Feist, B.J.; Snively, C.M.; Lauterbach, J.; Rogers, W. Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal. Commun. 2005, 6, 167–171. [Google Scholar] [CrossRef]
- Wang, T.Y.; Lu, Z.; Yang, S.H.; Sun, K. Ag/Mg-Al-O composite for low temperature NOx storage. Chem. Res. Chin. Univ. 2011, 27, 734–738. [Google Scholar]
- Velu, S.; Shah, N.; Jyothi, T.; Sivasanker, S. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg–Al layered double hydroxides. Microporous Mesoporous Mater. 1999, 33, 61–75. [Google Scholar] [CrossRef]
- Ai, L.; Wang, Z.; Cui, C.; Liu, W.; Wang, L. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide. Materials 2018, 11, 653. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, J.; Yichuan, Y.; Wang, Z.; Gao, Y.; Liu, W.; Yin, H. Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. J. Colloid Interface Sci. 2017, 508, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Z.; Wang, G.; Zhu, H.; Dong, M.; Li, S.; Wu, Z.; Li, Z.; Wu, Z.; Zhang, J.; et al. Catalytic performance of MnOx–NiO composite oxide in lean methane combustion at low temperature. Appl. Catal. B Environ. 2013, 129, 172–181. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, H.; Zhou, Y.; Zhang, L.; Wu, Z.; Yang, S.; Shi, H.; Zhu, Q.; Chen, Y.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tang, N.; Xiao, L.; Liu, Y.; Wang, H. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. J. Colloid Interface Sci. 2010, 352, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Ponce, S.; Peña, M.A.; Fierro, J. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal. B Environ. 2000, 24, 193–205. [Google Scholar] [CrossRef]
- Dai, F.; Yu, Y.; Meng, M.; Zhang, J.; Zheng, L.; Hu, T. Effects of Synthesis Routes on the States and Catalytic Performance of Manganese Oxides Used for Diesel Soot Combustion. Catal. Lett. 2014, 144, 1210–1218. [Google Scholar] [CrossRef]
- Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl. Surf. Sci. 2002, 195, 236–250. [Google Scholar] [CrossRef]
- Wagloehner, S.; Nitzer-Noski, M.; Kureti, S. Oxidation of soot on manganese oxide catalysts. Chem. Eng. J. 2015, 259, 492–504. [Google Scholar] [CrossRef]
- Ji, F.; Men, Y.; Wang, J.; Sun, Y.; Wang, Z.; Zhao, B.; Tao, X.; Xu, G. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4. Appl. Catal. B Environ. 2019, 242, 227–237. [Google Scholar] [CrossRef]
- Li, L.; Shen, Q.; Cheng, J.; Hao, Z. Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra. Catal. Today 2010, 158, 361–369. [Google Scholar] [CrossRef]
- Su, Y.; Amiridis, M.D. In situ FTIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts. Catal. Today 2004, 96, 31–41. [Google Scholar] [CrossRef]
- Nova, I. NOx adsorption study over Pt–Ba/alumina catalysts: FT-IR and pulse experiments. J. Catal. 2004, 222, 377–388. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, X.; Wang, Z.; Tang, Q.; Wang, L.; Zhang, Z. Hydrotalcites-Derived Well-Dispersed Mixed Oxides for NOx Adsorption and Desorption. Sci. Adv. Mater. 2016, 8, 1656–1667. [Google Scholar] [CrossRef]
- Alcalde-Santiago, V.; Davó-Quiñonero, A.; Such-Basáñez, I.; Lozano-Castelló, D.; Bueno-López, A. Macroporous carrier-free Sr-Ti catalyst for NOx storage and reduction. Appl. Catal. B Environ. 2018, 220, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Qi, X.X.; Chen, Z.L.; Jiang, L.L.; Wang, R.H.; Wei, K.M. Studies on SO2 tolerance and regeneration over perovskite-type LaCo1–xPtxO3 in NOx storage and reduction. J. Phys. Chem. C 2014, 118, 13743–13751. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Chen, M.; Zheng, X. The effect of water vapor on NOx storage and reduction in combination with plasma. Catal. Today 2013, 211, 66–71. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, L.; Wang, X.; Zou, W.; Cao, Y.; Sun, J.; Tang, C.; Gao, F.; Deng, Y.; Dong, L. Synthesis, characterization and catalytic performance of FeMnTiOx mixed oxides catalyst prepared by a CTAB-assisted process for mid-low temperature NH3-SCR. Appl. Catal. A Gen. 2015, 505, 235–242. [Google Scholar] [CrossRef]
Sample | Metal Molar Ratio in Mixed Salt Solution | 2θ (°) a | Lattice Parameter | Xs (nm) b | |
---|---|---|---|---|---|
a (Å) | c (Å) | ||||
Mn0-HT | Mg:Al = 75:25 | 11.32 | 3.101 | 23.435 | 10.5 |
Mn5-HT | Mn:Mg:Al = 5:70:25 | 11.35 | 3.099 | 23.431 | 9.8 |
Mn10-HT | Mn:Mg:Al = 10:65:25 | 11.38 | 3.099 | 23.430 | 18.8 |
Mn15-HT | Mn:Mg:Al = 15:60:25 | 11.51 | 3.098 | 23.429 | 14.4 |
Mn20-HT | Mn:Mg:Al = 20:55:25 | 11.57 | 3.100 | 23.431 | 10.1 |
Sample | SBET a (m2·g−1) | VP b (cm3·g−1) | DP c (nm) |
---|---|---|---|
Mn0 | 108 | 0.67 | 16.9 |
Mn5 | 144 | 0.68 | 14.3 |
Mn10 | 136 | 0.55 | 16.0 |
Mn15 | 133 | 0.83 | 22.6 |
Mn20 | 139 | 0.82 | 19.6 |
Sample | Mn3+/(Mn3+ + Mn4+) (%) | Oads/(Olatt + Oads) (%) | H2 Consumption a (mmol·g−1) | Mn3+% b |
---|---|---|---|---|
Mn0 | - | 82 | 0 | - |
Mn5 | 47 | 65 | 6.51 | 69 |
Mn10 | 51 | 57 | 10.32 | 76 |
Mn15 | 67 | 65 | 34.86 | 82 |
Mn20 | 62 | 64 | 21.34 | 78 |
Time (min) | NOx Storage Efficiency (%) | ||||
---|---|---|---|---|---|
Mn0 | Mn5 | Mn10 | Mn15 | Mn20 | |
1 | 100 | 100 | 100 | 100 | 100 |
5 | 62.8 | 69.2 | 79.9 | 87.2 | 91.3 |
10 | 39.5 | 46.4 | 55.1 | 60.7 | 63.4 |
30 | 18.9 | 23.1 | 26.0 | 28.4 | 28.9 |
60 | 12.9 | 16.1 | 17.3 | 19.2 | 19.4 |
Time (min) | NOx Storage Efficiency (%) | ||||
---|---|---|---|---|---|
150 °C | 200 °C | 250 °C | 300 °C | 350 °C | |
1 | 100 | 100 | 100 | 100 | 100 |
5 | 96.1 | 88.3 | 80.5 | 87.2 | 93.4 |
10 | 69.1 | 57.5 | 52.3 | 60.7 | 64.2 |
30 | 32.5 | 24.2 | 24.3 | 28.4 | 30.3 |
60 | 22.9 | 14.2 | 15.0 | 19.2 | 21.3 |
NOx Species | Structure | IR Bands/cm−1 | ||
---|---|---|---|---|
Mn0 | Mn5 | Mn15 | ||
Bridged bidentate nitrite | 1230 | 1226 | ||
Bridged bidentate nitrate | 1310 | 1310 1480 | ||
Monodenate nitrate | 1312 1447 | |||
Chelating bidentate nitrate | 1503 |
NOx Species | Structure | IR Bands/cm−1 | ||||
---|---|---|---|---|---|---|
150 °C | 200 °C | 250 °C | 300 °C | 350 °C | ||
Bridged bidentate nitrite | 1220 | 1230 | 1237 | 1237 | ||
Bridged bidentate nitrate | 1321 | 1300 | 1312 | 1312 | 1315 | |
Monodentate nitrate | 1445 | 1445 | 1438 | |||
Chelating bidentate nitrate | 1503 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Ma, J.; Wang, Z.; Liu, W.; Liu, W.; Wang, L. High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release. Catalysts 2019, 9, 677. https://doi.org/10.3390/catal9080677
Cui C, Ma J, Wang Z, Liu W, Liu W, Wang L. High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release. Catalysts. 2019; 9(8):677. https://doi.org/10.3390/catal9080677
Chicago/Turabian StyleCui, Chenchen, Junwei Ma, Zhongpeng Wang, Wei Liu, Wenxu Liu, and Liguo Wang. 2019. "High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release" Catalysts 9, no. 8: 677. https://doi.org/10.3390/catal9080677
APA StyleCui, C., Ma, J., Wang, Z., Liu, W., Liu, W., & Wang, L. (2019). High Performance of Mn-Doped MgAlOx Mixed Oxides for Low Temperature NOx Storage and Release. Catalysts, 9(8), 677. https://doi.org/10.3390/catal9080677