Laboratory and On-Road Evaluation of a GPF-Equipped Gasoline Vehicle
Abstract
:1. Introduction
2. Results and Discussion
2.1. Laboratory Emissions
2.1.1. Cycles at 23–25 °C
2.1.2. Cycles at −7 °C
2.2. Modified Cycles
2.3. On-Road Emissions
3. Materials and Methods
- Emissions compliance assessment.
- Assessment of vehicle emissions beyond boundary conditions of RDE.
- Development of Type VI (low temperature) test procedures.
- Monitoring of sub-23 nm emissions and evaluation of testing instrumentation.
3.1. Vehicle and Fuel
3.2. Laboratory Tests
3.2.1. Instrumentation
3.2.2. Test Cycles and Procedures
3.3. On-Road Tests
3.3.1. Instrumentation
3.3.2. Routes
3.4. Calculations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
References
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of automotive nonvolatile particle number emissions within the European legislative framework: A review. Aerosol. Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: A review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef]
- Müller, J.-O.; Frank, B.; Jentoft, R.E.; Schlögl, R.; Su, D.S. The oxidation of soot particulate in the presence of NO2. Catal. Today 2012, 191, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Quiros, D.C.; Hu, S.; Hu, S.; Lee, E.S.; Sardar, S.; Wang, X.; Olfert, J.S.; Jung, H.S.; Zhu, Y.; Huai, T. Particle effective density and mass during steady-state operation of GDI, PFI, and diesel passenger cars. J. Aerosol. Sci. 2015, 83, 39–54. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Herreros, J.M.; Lattimore, T.; Shuai, S. Fuel effect on particulate matter composition and soot oxidation in a direct-injection spark ignition (DISI) engine. Energy Fuels 2014, 28, 2003–2012. [Google Scholar] [CrossRef]
- Choi, S.; Seong, H. Oxidation characteristics of gasoline direct-injection (GDI) engine soot: Catalytic effects of ash and modified kinetic correlation. Combust. Flame 2015, 162, 2371–2389. [Google Scholar] [CrossRef] [Green Version]
- Clairotte, M.; Valverde, V.; Bonnel, P.; Giechaskiel, P.; Carriero, M.; Otura, M.; Fontaras, G.; Pavlovic, J.; Martini, G.; Krasenbrink, A. Joint Research Centre 2017 Light-Duty Vehicles Emissions Testing Contribution to the EU Market Surveillance: Testing Protocols and Vehicle Emissions Performance; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-90600-8.
- Valverde, V.; Mora, B.A.; Clairotte, M.; Pavlovic, J.; Suarez-Bertoa, R.; Giechaskiel, B.; Astorga-LLorens, C.; Fontaras, G. Emission factors derived from 13 Euro 6b light-duty vehicles based on laboratory and on-road measurements. Atmosphere 2019, 10, 243. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Valverde-Morales, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Franco, V.; Kregar, Z.; Astorga-LLorens, C. On-road emissions of passenger cars beyond the boundary conditions of the real-driving emissions test. Environ. Res. 2019, 176, 108572. [Google Scholar] [CrossRef]
- Guerreiro, C.; González Ortiz, A.; Leeuw, F.; de Viana, M.; Colette, A. European Environment Agency Air Quality in Europe—2018 Report; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-9213-989-6.
- Suarez-Bertoa, R.; Mendoza-Villafuerte, P.; Riccobono, F.; Vojtisek, M.; Pechout, M.; Perujo, A.; Astorga, C. On-road measurement of NH3 emissions from gasoline and diesel passenger cars during real world driving conditions. Atmos. Environ. 2017, 166, 488–497. [Google Scholar] [CrossRef]
- Park, G.; Mun, S.; Hong, H.; Chung, T.; Jung, S.; Kim, S.; Seo, S.; Kim, J.; Lee, J.; Kim, K.; et al. Characterization of emission factors concerning gasoline, LPG, and diesel vehicles via transient chassis-dynamometer tests. Appl. Sci. 2019, 9, 1573. [Google Scholar] [CrossRef]
- Barbier, J.; Duprez, D. Steam effects in three-way catalysis. Appl. Catal. B Environ. 1994, 4, 105–140. [Google Scholar] [CrossRef]
- Bradow, R.L.; Stump, F.D. Unregulated Emissions from Three-Way Catalyst Cars; No. 770369; SAE: Warrendale, PA, USA, 1977; p. 0369. [Google Scholar]
- Bishop, G.A.; Peddle, A.M.; Stedman, D.H.; Zhan, T. On-road emission measurements of reactive nitrogen compounds from three California cities. Environ. Sci. Technol. 2010, 44, 3616–3620. [Google Scholar] [CrossRef] [PubMed]
- Schuetzle, D.; Siegl, W.O.; Jensen, T.E.; Dearth, M.A.; Kaiser, E.W.; Gorse, R.; Kreucher, W.; Kulik, E. The relationship between gasoline composition and vehicle hydrocarbon emissions: A review of current studies and future research needs. Environ. Health Perspect. 1994, 102, 3–12. [Google Scholar] [PubMed]
- Zervas, E.; Montagne, X.; Lahaye, J. Emission of alcohols and carbonyl compounds from a spark ignition engine. influence of fuel and air/fuel equivalence ratio. Environ. Sci. Technol. 2002, 36, 2414–2421. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Haag, R.; Zeyer, K.; Mohn, J.; Comte, P.; Czerwinski, J.; Heeb, N.V. Effects of four prototype gasoline particle filters (GPFs) on nanoparticle and genotoxic PAH emissions of a gasoline direct injection (GDI) vehicle. Environ. Sci. Technol. 2018, 52, 10709–10718. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Johnson, T. Gasoline particulate filters—A review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of cold temperature on Euro 6 passenger car emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Rodriguez, F.; Dornoff, J. Beyond NOx: Emissions of Unregulated Pollutants from a Modern Gasoline Car; The International Council on Clean Transportation (ICCT): Berlin, Germany, 2019. [Google Scholar]
- Demuynck, J.; Favre, C.; Bosteels, D.; Hamje, H.; Andersson, J. Real-World Emissions Measurements of a Gasoline Direct Injection Vehicle without and with a Gasoline Particulate Filter; No. 2017-01-0985; SAE: Warrendale, PA, USA, 2017. [Google Scholar]
- Ito, Y.; Shimoda, T.; Aoki, T.; Yuuki, K.; Sakamoto, H.; Kato, K.; Thier, D.; Kattouah, P.; Ohara, E.; Vogt, C. Next Generation of Ceramic Wall Flow Gasoline Particulate Filter with Integrated Three Way Catalyst; No. 2015-01-1073; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Richter, J.M.; Klingmann, R.; Spiess, S.; Wong, K.-F. Application of catalyzed gasoline particulate filters to GDI vehicles. SAE Int. J. Engines 2012, 5, 1361–1370. [Google Scholar] [CrossRef]
- Wang, X.; Ge, Y.; Gong, H.; Yang, Z.; Tan, J.; Hao, L.; Su, S. Ammonia emissions from China-6 compliant gasoline vehicles tested over the WLTC. Atmos. Environ. 2019, 199, 136–142. [Google Scholar] [CrossRef]
- Choi, K.; Kim, J.; Ko, A.; Myung, C.-L.; Park, S.; Lee, J. Size-resolved engine exhaust aerosol characteristics in a metal foam particulate filter for GDI light-duty vehicle. J. Aerosol. Sci. 2013, 57, 1–13. [Google Scholar] [CrossRef]
- Pieber, S.M.; Kumar, N.K.; Klein, F.; Comte, P.; Bhattu, D.; Dommen, J.; Bruns, E.A.; Kılıç, D.; El Haddad, I.; Keller, A.; et al. Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor. Atmos. Chem. Phys. 2018, 18, 9929–9954. [Google Scholar] [CrossRef] [Green Version]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Isocyanic acid and ammonia in vehicle emissions. Transp. Res. Part D Transp. Environ. 2016, 49, 259–270. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Investigations into Particulate Emissions from EURO 5 Passenger Cars with DISI Engines Tested at Multiple Ambient Temperatures; No. 2015-24-2517; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Suarez-Bertoa, R.; Pavlovic, J.; Trentadue, G.; Otura-Garcia, M.; Tansini, A.; Ciuffo, B.; Astorga, C. Effect of low ambient temperature on emissions and electric range of plug-in hybrid electric vehicles. ACS Omega 2019, 4, 3159–3168. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Choi, Y.; Park, S. Reduction of particle emissions from gasoline vehicles with direct fuel injection systems using a gasoline particulate filter. Sci. Total Environ. 2018, 644, 1418–1428. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Keuken, H.; Astorga, C. Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC). Fuel 2015, 143, 173–182. [Google Scholar] [CrossRef]
- Clairotte, M.; Adam, T.W.; Zardini, A.A.; Manfredi, U.; Martini, G.; Krasenbrink, A.; Vicet, A.; Tournié, E.; Astorga, C. Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline. Appl. Energy 2013, 102, 44–54. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Clairotte, M.; Arlitt, B.; Nakatani, S.; Hill, L.; Winkler, K.; Kaarsberg, C.; Knauf, T.; Zijlmans, R.; Boertien, H.; et al. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC. Fuel 2017, 203, 330–340. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Unregulated emissions from light-duty hybrid electric vehicles. Atmos. Environ. 2016, 136, 134–143. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Low ambient temperature cold start emissions of gaseous and solid pollutants from Euro 5 vehicles featuring direct and indirect injection spark-ignition engines. SAE Int. J. Fuels Lubr. 2013, 6, 968–976. [Google Scholar] [CrossRef]
- Weber, C.; Sundvor, I.; Figenbaum, E. Comparison of regulated emission factors of Euro 6 LDV in Nordic temperatures and cold start conditions: Diesel- and gasoline direct-injection. Atmos. Environ. 2019, 206, 208–217. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, J.; Bao, X.; He, L.; Lai, Y.; Zu, L.; Li, Y.; Su, S. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures. Environ. Pollut. 2016, 216, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Weilenmann, M.; Soltic, P.; Saxer, C.; Forss, A.-M.; Heeb, N. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmos. Environ. 2005, 39, 2433–2441. [Google Scholar] [CrossRef]
- Weilenmann, M.; Favez, J.-Y.; Alvarez, R. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmos. Environ. 2009, 43, 2419–2429. [Google Scholar] [CrossRef]
- Fontaras, G.; Ciuffo, B.; Zacharof, N.; Tsiakmakis, S.; Marotta, A.; Pavlovic, J.; Anagnostopoulos, K. The difference between reported and real-world CO2 emissions: How much improvement can be expected by WLTP introduction? Transp. Res. Procedia 2017, 25, 3933–3943. [Google Scholar] [CrossRef]
- Mamakos, A.; Martini, G.; Marotta, A.; Manfredi, U. Assessment of different technical options in reducing particle emissions from gasoline direct injection vehicles. J. Aerosol. Sci. 2013, 63, 115–125. [Google Scholar] [CrossRef]
- Ito, Y.; Shimoda, T.; Aoki, T.; Shibagaki, Y.; Yuuki, K.; Sakamoto, H.; Vogt, C.; Matsumoto, T.; Heuss, W.; Kattouah, P. Advanced Ceramic Wall Flow Filter for Reduction of Particulate Number Emission of Direct Injection Gasoline Engines; No. 2013-01-0836; SAE: Warrendale, PA, USA, 2013. [Google Scholar]
- Zhang, R.; Howard, K.; Kirkman, P.; Browne, D.; Lu, Z.; He, S.; Boger, T. A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance Through a Real-World Fleet Test; No. 2019-01-0299; SAE: Warrendale, PA, USA, 2019. [Google Scholar]
- Chan, T.W.; Saffaripour, M.; Liu, F.; Hendren, J.; Thomson, K.A.; Kubsh, J.; Brezny, R.; Rideout, G. Characterization of real-time particle emissions from a gasoline direct injection vehicle equipped with a catalyzed gasoline particulate filter during filter regeneration. Emiss. Control Sci. Technol. 2016, 2, 75–88. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle number measurements in the European legislation and future JRC activities. Combust. Engines 2018, 174, 3–16. [Google Scholar]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine exhaust solid sub-23 nm particles: I. literature survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Vanhanen, J.; Väkevä, M.; Martini, G. Investigation of vehicle exhaust sub-23 nm particle emissions. Aerosol. Sci. Technol. 2017, 51, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Inomata, S.; Tanimoto, H. Particle and VOC emissions from stoichiometric gasoline direct injection vehicles and correlation between particle number and mass emissions. Emiss. Control Sci. Technol. 2017, 3, 135–141. [Google Scholar] [CrossRef]
- Saffaripour, M.; Chan, T.W.; Liu, F.; Thomson, K.A.; Smallwood, G.J.; Kubsh, J.; Brezny, R. Effect of drive cycle and gasoline particulate filter on the size and morphology of soot particles emitted from a gasoline-direct-injection vehicle. Environ. Sci. Technol. 2015, 49, 11950–11958. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Funato, K.; Sakurai, H. Application of the PMP methodology to the measurement of sub-23 nm solid particles: Calibration procedures, experimental uncertainties, and data correction methods. J. Aerosol. Sci. 2015, 88, 58–71. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Suarez-Bertoa, R.; Lahde, T.; Clairotte, M.; Carriero, M.; Bonnel, P.; Maggiore, M. Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System. Atmosphere 2019, 10, 180. [Google Scholar] [CrossRef]
- Adachi, M.; Nakamura, H. (Eds.) Engine Emissions Measurement Handbook: HORIBA Automotive Test Systems; SAE International: Warrendale, PA, USA, 2014; ISBN 978-0-7680-8012-4. [Google Scholar]
- Varella, R.; Giechaskiel, B.; Sousa, L.; Duarte, G. Comparison of Portable Emissions Measurement Systems (PEMS) with Laboratory Grade Equipment. Appl. Sci. 2018, 8, 1633. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and accuracy of a particle number measurement system. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- Pavlovic, J.; Ciuffo, B.; Fontaras, G.; Valverde, V.; Marotta, A. How much difference in type-approval CO2 emissions from passenger cars in Europe can be expected from changing to the new test procedure (NEDC vs. WLTP)? Transp. Res. Part A Policy Pract. 2018, 111, 136–147. [Google Scholar] [CrossRef]
- Tsiakmakis, S.; Fontaras, G.; Ciuffo, B.; Samaras, Z. A simulation-based methodology for quantifying European passenger car fleet CO2 emissions. Appl. Energy 2017, 199, 447–465. [Google Scholar] [CrossRef]
- European Commission. Guidance on the Evaluation of Auxiliary Emission Strategies and the Presence of Defeat Devices with Regard to the Application of Regulation (EC) no 715/2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and euro 6). Commission Notice C (2017) 352 2017; Publications Office of the European Union: Luxembourg, 2017.
- Giechaskiel, B.; Gioria, R.; Carriero, M.; Lähde, T.; Forloni, F.; Perujo, A.; Martini, G.; Bissi, L.M.; Terenghi, R. Emission factors of a Euro VI heavy-duty diesel refuse collection vehicle. Sustainability 2019, 11, 1067. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Schwelberger, M.; Delacroix, C.; Marchetti, M.; Feijen, M.; Prieger, K.; Andersson, S.; Karlsson, H.L. Experimental assessment of solid particle number Portable Emissions Measurement Systems (PEMS) for heavy-duty vehicles applications. J. Aerosol Sci. 2018, 123, 161–170. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
Pollutant | Unit | Instrument | Euro 6b Limits (NEDC Based) | NEDC 25 °C | WLTP 23 °C | WLTP −7 °C |
---|---|---|---|---|---|---|
CO2 | g/km | NDIR | (132) 1 | 137 ± 3 | 153 ± 3 | 169 ± 2 |
CO | mg/km | NDIR | 1000 | 110 ± 2 | 178 ± 32 | 706 ± 102 |
THC | mg/km | FID | 100 | 27 ± 4 | 17 ± 8 | 129 ± 12 |
NMHC | mg/km | FID | 68 | 24 ± 10 | 14 ± 7 | 118 ± 13 |
CH4 | mg/km | FID | 3 ± 0 | 11 ± 1 | ||
NOx | mg/km | CLD | 60 | 25 ± 2 | 30 ± 4 | 46 ± 2 |
NO2 | mg/km | CLD | 15 ± 2 | 15 ± 2 | ||
NH3 | mg/km | FTIR | 11 ± 2 | 27 ± 3 | ||
N2O | mg/km | FTIR | 2 ± 0 | 2 ± 1 | ||
HCHO | mg/km | FTIR | 0.1 ± 0 | 0.2 ± 0 | ||
CH3CHO | mg/km | FTIR | 0.2 ± 0 | 0.8 ± 0.1 | ||
AHC | mg/km | FTIR | 5 ± 3 | 42 ± 1 | ||
SPN23 | ×1010 p/km | CPC | 60 2 | 2.5 ± 0.1 | 3.5 ± 0.1 | 4.5 ± 0.1 |
SPN10 | ×1010 p/km | CPC | 4.8 | 7.1 |
RDE-1 | RDE-2 | RDE-1-D | RDE-1-D * | RDE-2-D | City-Motor | Hill | |
---|---|---|---|---|---|---|---|
CO2 (g/km) | 173 | 170 | 193 | 178 | 189 | 158 | 182 |
CO (mg/km) | 189 | 133 | 3973 | 2409 | 3065 | 181 | 149 |
NOx (mg/km) | 24 | 15 | 23 | 205 | 25 | 16 | 18 |
NO2 (mg/km) | 2 | 1 | 2 | 12 | 2 | 2 | 3 |
SPN23 (×1010 p/km) | 2.0 | 1.7 | 4.9 | 2.3 | 4.1 | 1.3 | 1.4 |
Combustion type | Spark ignition |
Fuel system | Direct injection |
Aftertreatment | TWC + GPF |
Engine displacement (cm3) | 1395 |
Engine power (kW) | 110 |
Transmission/Gearbox | Manual/6 |
Vehicle mass (kg) | 1495 |
Declared CO2 (NEDC) (g/km) | 132 |
EU emission standard | Euro 6b |
Registration year | 01/2018 |
Mileage (km) | 4950 |
NEDC | NEDC Hot | NEDC Hot R | NEDC Aux | WLTP | WLTP Hot | |
---|---|---|---|---|---|---|
Dyno inertia | 1470 | 1470 | 1470 | 1470 | 1704 | 1704 |
Distance (km) | 10.9 | 10.9 | 10.9 | 10.9 | 23.2 | 23.2 |
Duration (min) | 19.7 | 19.7 | 19.7 | 19.7 | 30 | 30 |
Tamb (°C) | 25 | 25 | 25 | 25 | 23 | 23 |
RH (%) | 50 | 50 | 50 | 50 | 50 | 50 |
Mean speed (km/h) | 33.3 | 33.3 | 33.3 | 33.3 | 46.5 | 46.5 |
95th v × a (m2/s3) | 7.5 | 7.5 | 7.5 | 7.5 | 12.5 | 12.5 |
Toil (°C) | 25 | 70 | 85 | 25 | 23 | 70 |
RDE-1 | RDE-2 | RDE-1-D | RDE-1-D * | RDE-2-D | City-Motor | Hill | |
---|---|---|---|---|---|---|---|
Distance (km) | 78 | 94 | 78 | 77 | 93 | 139 | 62 |
Duration (min) | 99 | 112 | 94 | 96 | 104 | 136 | 106 |
Mean Tamb (°C) | 22 | 23 | 20 | 28 | 23 | 26 | 23 |
RH (%) | 67 | 69 | 75 | 34 | 63 | 57 | 67 |
Urban stop time (%) | 22 | 20 | 25 | 25 | 21 | 14 | 8 |
Urban distance (km) | 31 | 37 | 29 | 28 | 33 | 40 | 62 |
Rural distance (km) | 25 | 26 | 26 | 26 | 29 | 18 | - |
Motorway distance (km) | 22 | 31 | 23 | 23 | 31 | 81 | - |
Mean eng. speed (rpm) | 1400 | 1515 | 1810 | 1730 | 1815 | 1730 | 1330 |
Mean speed (km/h) | 48.0 | 50.5 | 50.3 | 49.0 | 54.2 | 61.3 | 34.5 |
Urban 95th v × a (m2/s3) | 10.7 | 11.4 | 20.7 | 15.6 | 20.3 | 10.8 | 8.8 |
Rural 95th v × a (m2/s3) | 16.6 | 15.4 | 29.6 | 26.0 | 28.9 | 17.2 | - |
Motor. 95th v × a (m2/s3) | 14.8 | 16.1 | 31.5 | 23.4 | 31.5 | 17.9 | - |
CPEG (m/100 km) | 800 | 878 | 760 | 760 | 820 | 440 | 1830 |
Max altitude | 300 | 410 | 300 | 300 | 410 | 300 | 1100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez-Bertoa, R.; Lähde, T.; Pavlovic, J.; Valverde, V.; Clairotte, M.; Giechaskiel, B. Laboratory and On-Road Evaluation of a GPF-Equipped Gasoline Vehicle. Catalysts 2019, 9, 678. https://doi.org/10.3390/catal9080678
Suarez-Bertoa R, Lähde T, Pavlovic J, Valverde V, Clairotte M, Giechaskiel B. Laboratory and On-Road Evaluation of a GPF-Equipped Gasoline Vehicle. Catalysts. 2019; 9(8):678. https://doi.org/10.3390/catal9080678
Chicago/Turabian StyleSuarez-Bertoa, Ricardo, Tero Lähde, Jelica Pavlovic, Victor Valverde, Michael Clairotte, and Barouch Giechaskiel. 2019. "Laboratory and On-Road Evaluation of a GPF-Equipped Gasoline Vehicle" Catalysts 9, no. 8: 678. https://doi.org/10.3390/catal9080678
APA StyleSuarez-Bertoa, R., Lähde, T., Pavlovic, J., Valverde, V., Clairotte, M., & Giechaskiel, B. (2019). Laboratory and On-Road Evaluation of a GPF-Equipped Gasoline Vehicle. Catalysts, 9(8), 678. https://doi.org/10.3390/catal9080678