Scheme 1.
Synthesis of FePPTPA nanocatalysts.
Scheme 1.
Synthesis of FePPTPA nanocatalysts.
Figure 1.
N2 adsorption/desorption isotherms of (a) neat, (b) sulfonated, and (c) nanoparticle incorporated PPTPA at (A) 80, (B) 100, (C) 120, (D) 140, (E) 160, (F) 180, and (G) 200 °C.
Figure 1.
N2 adsorption/desorption isotherms of (a) neat, (b) sulfonated, and (c) nanoparticle incorporated PPTPA at (A) 80, (B) 100, (C) 120, (D) 140, (E) 160, (F) 180, and (G) 200 °C.
Figure 2.
XRD patterns of neat, sulfonated and magnetic PPTPA polymers synthesized at different temperature of 80, 100, 120, 140, 160, 180, and 200 °C.
Figure 2.
XRD patterns of neat, sulfonated and magnetic PPTPA polymers synthesized at different temperature of 80, 100, 120, 140, 160, 180, and 200 °C.
Figure 3.
FTIR spectra of neat, sulfonated and nanoparticle incorporated PPTPA synthesized at different temperature of 80, 100, 120, 140, 160, 180, and 200 °C.
Figure 3.
FTIR spectra of neat, sulfonated and nanoparticle incorporated PPTPA synthesized at different temperature of 80, 100, 120, 140, 160, 180, and 200 °C.
Figure 4.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 80 °C.
Figure 4.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 80 °C.
Figure 5.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 100 °C.
Figure 5.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 100 °C.
Figure 6.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 120 °C.
Figure 6.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 120 °C.
Figure 7.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 140 °C.
Figure 7.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 140 °C.
Figure 8.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 160 °C.
Figure 8.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 160 °C.
Figure 9.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 180 °C.
Figure 9.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 180 °C.
Figure 10.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 200 °C.
Figure 10.
SEM images of (A,B) neat, (C,D) sulfonated PPTPA, and (E,F) Fe incorporated SPPTPA at 200 °C.
Figure 11.
TGA plots of neat, sulfonated PPTPA and Fe incorporated SPPTPA polymers synthesized at different temperature of 80, 100, 120, 140, 160, 180, and 200 °C.
Figure 11.
TGA plots of neat, sulfonated PPTPA and Fe incorporated SPPTPA polymers synthesized at different temperature of 80, 100, 120, 140, 160, 180, and 200 °C.
Figure 12.
Recyclability and reusability of FeSPPTPA80 nanocatalyst. Reaction conditions: fructose (25 mg), FeSPPTPA80 catalyst (5 mg), Temp. 100 °C, microwave irradiation and DMSO solvent (3 mL).
Figure 12.
Recyclability and reusability of FeSPPTPA80 nanocatalyst. Reaction conditions: fructose (25 mg), FeSPPTPA80 catalyst (5 mg), Temp. 100 °C, microwave irradiation and DMSO solvent (3 mL).
Figure 13.
FESEM images of reused SPPTPA80 catalyst.
Figure 13.
FESEM images of reused SPPTPA80 catalyst.
Table 1.
BET results for polytriphenylamine (PPTPA) polymers.
Table 1.
BET results for polytriphenylamine (PPTPA) polymers.
Sample | Surface Area (m2/g) | Pore Volume (cm3/g) |
---|
PPTPA80 | 1024 | 0.69 |
SPPTPA80 | 535 | 0.34 |
Fe3O4/SPPTPA80 | 223 | 0.18 |
PPTPA100 | 994 | 0.66 |
SPPTPA100 | 506 | 0.32 |
Fe3O4/SPPTPA100 | 242 | 0.22 |
PPTPA120 | 921 | 0.59 |
SPPTPA120 | 541 | 0.33 |
Fe3O4/SPPTPA120 | 246 | 0.21 |
PPTPA140 | 1156 | 0.79 |
SPPTPA140 | 644 | 0.42 |
Fe3O4/SPPTPA140 | 304 | 0.31 |
PPTPA160 | 1078 | 0.76 |
SPPTPA160 | 658 | 0.45 |
Fe3O4/SPPTPA160 | 243 | 0.29 |
PPTPA180 | 873 | 0.64 |
SPPTPA180 | 444 | 0.33 |
Fe3O4/SPPTPA180 | 237 | 0.29 |
PPTPA200 | 718 | 0.51 |
SPPTPA200 | 429 | 0.30 |
Fe3O4/SPPTPA200 | 207 | 0.26 |
Table 2.
Sulfur percentage in sulfonated POPs.
Table 2.
Sulfur percentage in sulfonated POPs.
Sample | % Sulfur |
---|
SPPTPA80 | 5.7 |
SPPTPA100 | 6.9 |
SPPTPA120 | 5.5 |
SPPTPA140 | 3.9 |
SPPTPA160 | 4.3 |
SPPTPA180 | 3.8 |
SPPTPA200 | 4.7 |
Table 3.
Sulfur and Iron percentage in Magnetic POPs.
Table 3.
Sulfur and Iron percentage in Magnetic POPs.
Sample | % S | % Fe |
---|
Fe3O4/SPPTPA80 | 5.7 | 0.9 |
Fe3O4/SPPTPA100 | 6.9 | 1.1 |
Fe3O4/SPPTPA120 | 5.5 | 1.0 |
Fe3O4/SPPTPA140 | 3.9 | 0.6 |
Fe3O4/SPPTPA160 | 4.3 | 0.6 |
Fe3O4/SPPTPA180 | 3.8 | 0.5 |
Fe3O4/SPPTPA200 | 4.7 | 0.3 |
Table 4.
Conversion of fructose to HMF catalyzed by FeSPPTPA nanocatalysts.
Table 4.
Conversion of fructose to HMF catalyzed by FeSPPTPA nanocatalysts.
Entry | Catalyst | Temperature [°C] | Fructose Conversion [%] | HMF Yield [%] |
---|
1 | FeSPPTPA80 | 80 | 80.5 | 11.7 |
2 | FeSPPTPA80 | 100 | 95.0 | 96.6 |
3 | FeSPPTPA80 | 120 | 95.0 | 31.2 |
4 | FeSPPTPA100 | 80 | 82.0 | 13.6 |
5 | FeSPPTPA100 | 100 | 95.0 | 19.5 |
6 | FeSPPTPA100 | 120 | 95.0 | 25.1 |
7 | FeSPPTPA120 | 80 | 83.4 | 10.6 |
8 | FeSPPTPA120 | 100 | 95.0 | 66.1 |
9 | FeSPPTPA120 | 120 | 95.0 | 48.1 |
10 | FeSPPTPA140 | 80 | 87.4 | 16.0 |
11 | FeSPPTPA140 | 100 | 95.0 | 22.3 |
12 | FeSPPTPA140 | 120 | 95.0 | 67.8 |
13 | FeSPPTPA160 | 80 | 86.0 | 0.2 |
14 | FeSPPTPA160 | 100 | 95.0 | 7.5 |
15 | FeSPPTPA160 | 120 | 95.0 | 57.2 |
16 | FeSPPTPA180 | 80 | 84.8 | 64.1 |
17 | FeSPPTPA180 | 100 | 95.0 | 43.8 |
18 | FeSPPTPA180 | 120 | 95.0 | 71.8 |
19 | FeSPPTPA200 | 80 | 83.5 | 69.5 |
20 | FeSPPTPA200 | 100 | 95.0 | 71.8 |
21 | FeSPPTPA200 | 120 | 95.0 | 81.1 |
22 | FeSPPTPA80 | 25, microwave | 44.0 | 1.1 |
23 | FeSPPTPA80 | 25, room temp | 46.2 | 1.8 |
24 | FeSPPTPA80 | 100, room temp | 46.8 | 1.9 |
25 | FeSPPTPA80 | 100, reflux | 80.0 | 1.4 |
26 | PPTPA | 100 | 95.0 | 9.0 |
Table 5.
Influence of solvent in the conversion of fructose to HMF.
Table 5.
Influence of solvent in the conversion of fructose to HMF.
Entry | Solvent | Fructose Conversion [%] | HMF Yield [%] |
---|
1 | DMSO | 95.0 | 96.6 |
2 | Ethanol | 94.8 | 1.2 |
3 | Methanol | 95.0 | 2.2 |
4 | THF | 95.4 | 50.1 |
5 | Ethylene glycol | 94.8 | 2.8 |
Table 6.
Dehydration of fructose at different time intervals.
Table 6.
Dehydration of fructose at different time intervals.
Entry | Time [min] | Fructose Conversion [%] | HMF Yield [%] |
---|
1 | 10 | 95.0 | 63.5 |
2 | 20 | 95.0 | 96.6 |
3 | 30 | 95.0 | 42.6 |
4 | 60 | 95.0 | 34.3 |
Table 7.
Influence of catalyst loading on dehydration of fructose.
Table 7.
Influence of catalyst loading on dehydration of fructose.
Entry | Catalyst Amount [g] | Fructose Conversion [%] | HMF Yield [%] |
---|
1 | 0 | 57.0 | 3.2 |
2 | 2 | 95.0 | 4.5 |
3 | 5 | 95.0 | 96.6 |
4 | 10 | 95.0 | 14.0 |