Performance Analysis of Biocathode in Bioelectrochemical CO2 Reduction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Open Circuit and Blank Operation
2.2. MES at High Cathode Potentials
2.3. Open Circuit and Baseline MES Operation
2.4. Biocathode Adaptation
3. Materials and Methods
3.1. Reactor and Feed Preparation
3.2. Open Circuit and Blank Operations
3.3. MES at High Cathode Potentials
3.4. Open Circuit and Baseline Operation
3.5. Biocathode Adaptation
3.6. Analytical Methods and Calculations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, R.; Chen, S.; Li, X. Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl. Biochem. Biotechnol. 2010, 160, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Monnet, F. An Introduction to Anaerobic Digestion of Organic Wastes; Remade: Crieff, Scotland, UK, 2003. [Google Scholar]
- Mastellone, M.L.; Brunner, P.H.; Arena, U. Scenarios of waste management for a waste emergency area: A substance flow analysis. J. Ind. Ecol. 2009, 13, 735–757. [Google Scholar] [CrossRef]
- Martin, M.; Eklund, M. Improving the environmental performance of biofuels with industrial symbiosis. Biomass Bioenergy 2011, 35, 1747–1755. [Google Scholar] [CrossRef]
- Iacovidou, E.; Ohandja, D.G.; Voulvoulis, N. Food waste co-digestion with sewage sludge—Realising its potential in the UK. J. Environ. Manag. 2012, 112, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.W.J.; Celia, M.A. Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, E8815–E8824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, E.; Dellamuzia, L.; Moretti, U.; Fuoco, A.; Giorno, L.; Jansen, J.C. Simultaneous production of biomethane and food grade CO2 from biogas: An industrial case study. Energy Environ. Sci. 2019, 12, 281–289. [Google Scholar] [CrossRef]
- Koornneef, J.; Van Breevoort, P.; Noothout, P.; Hendriks, C.; Luning, L.; Camps, A. Global potential for biomethane production with carbon capture, transport and storage up to 2050. Energy Proc. 2013, 37, 6043–6052. [Google Scholar] [CrossRef]
- Sutanto, S.; Dijkstra, J.W.; Pieterse, J.A.Z.; Boon, J.; Hauwert, P.; Brilman, D.W.F. CO2 removal from biogas with supported amine sorbents: First technical evaluation based on experimental data. Sep. Purif. Technol. 2017, 184, 12–25. [Google Scholar] [CrossRef]
- Bajón Fernández, Y.; Soares, A.; Villa, R.; Vale, P.; Cartmell, E. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. Bioresour. Technol. 2014, 159, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajón Fernández, Y.; Green, K.; Schuler, K.; Soares, A.; Vale, P.; Alibardi, L.; Cartmell, E. Biological carbon dioxide utilisation in food waste anaerobic digesters. Water Res. 2015, 87, 467–475. [Google Scholar] [CrossRef]
- Yousef, A.M.I.; Eldrainy, Y.A.; El-Maghlany, W.M.; Attia, A. Upgrading biogas by a low-temperature CO2 removal technique. Alexandria Eng. J. 2016, 55, 1143–1150. [Google Scholar] [CrossRef]
- Li, H.; Tan, Y.; Ditaranto, M.; Yan, J.; Yu, Z. Capturing CO2 from biogas plants. Energy Procedia 2017, 114, 6030–6035. [Google Scholar] [CrossRef]
- Vo, T.T.Q.; Wall, D.M.; Ring, D.; Rajendran, K.; Murphy, J.D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Appl. Energy 2018, 212, 1191–1202. [Google Scholar] [CrossRef]
- García-Gutiérrez, P.; Jacquemin, J.; McCrellis, C.; Dimitriou, I.; Taylor, S.F.R.; Hardacre, C.; Allen, R.W.K. Techno-economic feasibility of selective CO2 capture processes from biogas streams using ionic liquids as physical absorbents. Energy Fuels 2016, 30, 5052–5064. [Google Scholar] [CrossRef]
- Scholz, M.; Frank, B.; Stockmeier, F.; Falß, S.; Wessling, M. Techno-economic analysis of hybrid processes for biogas upgrading. Ind. Eng. Chem. Res. 2013, 52, 16929–16938. [Google Scholar] [CrossRef]
- Dębowski, M.; Szwaja, S.; Zieliński, M.; Kisielewska, M.; Stańczyk-Mazanek, E. The Influence of Anaerobic Digestion Effluents (ADEs) Used as the Nutrient Sources for Chlorella sp. Cultivation on Fermentative Biogas Production. Waste and Biomass Valorization 2017, 8, 1153–1161. [Google Scholar] [CrossRef]
- Aryal, N.; Ammam, F.; Patil, S.A.; Pant, D. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide. Green Chem. 2017, 19, 5748–5760. [Google Scholar] [CrossRef]
- Nelabhotla, A.B.T.; Dinamarca, C. Bioelectrochemical CO2 Reduction to Methane: MES Integration in Biogas Production Processes. Appl. Sci. 2019, 9, 1056. [Google Scholar] [CrossRef]
- Lackner, N.; Hintersonnleitner, A.; Wagner, A.O.; Illmer, P. Hydrogenotrophic Methanogenesis and Autotrophic Growth of Methanosarcina thermophila. Hindawi Archaea 2018, 2018, 4712608. [Google Scholar] [CrossRef]
- Xu, H.; Gong, S.; Sun, Y.; Ma, H.; Zheng, M.; Wang, K. High-rate hydrogenotrophic methanogenesis for biogas upgrading: The role of anaerobic granules. Environ. Technol. 2015, 36, 529–537. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Ali Shah, F.; Mahmood, Q.; Maroof Shah, M.; Pervez, A.; Ahmad Asad, S. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Sci. World J. 2014, 2014, 183752. [Google Scholar] [CrossRef]
- van Eerten-Jansen, M.C.A.A.; Heijne, A.T.; Buisman, C.J.N.; Hamelers, H.V.M. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int. J. Energy Res. 2012, 36, 809–819. [Google Scholar] [CrossRef]
- Rotaru, A.-E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; Lovley, D.R. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7, 408–415. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S.; Somridhivej, B. Alkalinity and Hardness: Critical but Elusive Concepts in Aquaculture. J. World Aquac. Soc. 2016, 47, 6–41. [Google Scholar] [CrossRef]
- Stabenau, E.K.; Heming, T.A. Determination of the Constants of the Henderson–Hasselbalch Equation, αCO2 and pKa, in Sea Turtle Plasma. J. Exp. Biol. 1993, 180, 311–314. [Google Scholar]
- Mohammadi, M.; Mohamed, A.R.; Najafpour, G.D.; Younesi, H.; Uzir, M.H. Effect of organic substrate on promoting solventogenesis in ethanologenic acetogene Clostridium ljungdahlii ATCC 55383. Int. J. Eng. Trans. B Appl. 2014, 27, 185–194. [Google Scholar] [CrossRef]
- Jabeen, G.; Farooq, R. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation. J. Biosci. 2016, 41, 367–380. [Google Scholar] [CrossRef]
- Aryal, N.; Tremblay, P.L.; Lizak, D.M.; Zhang, T. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresour. Technol. 2017, 233, 184–190. [Google Scholar] [CrossRef]
- Aryal, N.; Zhang, T.; Tremblay, P.-L. Microbial Electrosynthesis for Acetate Production from Carbon Dioxide: Innovative Biocatalysts Leading to Enhanced Performance. Ph.D. Thesis, Technical University of Denmark, Lingbi, Denmark, 2017. [Google Scholar]
- Cheng, S.; Xing, D.; Call, D.F.; Logan, B.E.; Cheng, S.; Xing, D.; Call, D.F.; Logan, B.E. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol. 2009, 43, 3953–3958. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Shin, W.; Jo, S.; Jun, H. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste. Bioresour. Technol. 2018, 259, 423–432. [Google Scholar] [CrossRef]
- Cho, K.; Kwon, D.; Hoffmann, M.R. Electrochemical treatment of human waste coupled with molecular hydrogen production. RSC Adv. 2014, 4, 4596–4608. [Google Scholar] [CrossRef]
- Ghimire, U.; Jang, M.; Jung, S.P.; Park, D.; Park, S.J.; Yu, H.; Oh, S.E. Electrochemical removal of ammonium nitrogen and cod of domestic wastewater using platinum coated titanium as an anode electrode. Energies 2019, 12, 883. [Google Scholar] [CrossRef]
- Candido, L.; Ponciano Gomes, A.A.; Medaber Jambo, H.C. Electrochemical treatment of oil refinery wastewater for NH3-N and COD removal. Int. J. Electrochem. Sci. 2013, 8, 9187–9200. [Google Scholar]
- Nelabhotla, A.B.T.; Dinamarca, C. Optimisation of Electrochemical Treatment of Artificial Wastewater using Cyclic Voltammetry. Int. J. Environ. Sci. Dev. 2018, 9, 218–221. [Google Scholar] [CrossRef]
- APHA. Standard Methods For the Examination of Water and Wastewater; Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2018. [Google Scholar]
Experiments | Duration (days) | Bicarbonate (mM) | Acetic Acid (mM) | Inlet COD (mg/L) | Inlet Acetate (mg/L) | Feed pH | Cathode Potential (V vs. SHE) |
---|---|---|---|---|---|---|---|
Open Circuit | 10 | 85 | 17 | 2700–2800 | 1200–1300 | 7.0 | - |
Blank | 10 | 85 | 0 | 1400–1500 | 3–5 | 7.2 | - |
MES for Acetic Acid | 34 | 85 | 0 | 1300–1600 | 2–8.5 | 7.0 (HCl) & 7.7 (No HCl) | −0.8 to −0.9 |
Baseline Methane Production | 9 | 85 | 17 | 2500–2700 | 1150–1200 | 7.0 | −0.65 |
Biocathode Adaptation | 49 * | 85 | 17 to 0 (gradual) | 2700–1500 | 1200–110 | 7.0 (AA and HCl) | −0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelabhotla, A.B.T.; Bakke, R.; Dinamarca, C. Performance Analysis of Biocathode in Bioelectrochemical CO2 Reduction. Catalysts 2019, 9, 683. https://doi.org/10.3390/catal9080683
Nelabhotla ABT, Bakke R, Dinamarca C. Performance Analysis of Biocathode in Bioelectrochemical CO2 Reduction. Catalysts. 2019; 9(8):683. https://doi.org/10.3390/catal9080683
Chicago/Turabian StyleNelabhotla, Anirudh Bhanu Teja, Rune Bakke, and Carlos Dinamarca. 2019. "Performance Analysis of Biocathode in Bioelectrochemical CO2 Reduction" Catalysts 9, no. 8: 683. https://doi.org/10.3390/catal9080683
APA StyleNelabhotla, A. B. T., Bakke, R., & Dinamarca, C. (2019). Performance Analysis of Biocathode in Bioelectrochemical CO2 Reduction. Catalysts, 9(8), 683. https://doi.org/10.3390/catal9080683