Probing Trace Elements in Human Tissues with Synchrotron Radiation
Abstract
:1. Introduction
2. Preliminary Concepts and Ideas
2.1. XRF and XAS
2.2. Additional Synchrotron-Based X-ray Methods
2.3. Radiation-Induced Damage in Biological Samples
3. XRF and XAS Measurements in Human Tissues
3.1. Cell Biology and Cancer
3.2. Brain and Nervous System
3.3. Bone, Teeth, and Internal Organs
3.4. Hair, Skin, and Nails
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blewett, J.P. Synchrotron radiation—early history. J. Synchrotron Radiat. 1998, 5, 135–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arons, A.B.; Peppard, M.B. Einstein’s proposal of the photon concept—a translation of the Annalen der Physik paper of 1905. Am. J. Phys. 1965, 33, 367–374. [Google Scholar] [CrossRef]
- Iwanenko, D.; Pomarenchuk, I. On the maximal energy attainable in a betatron. Phys. Rev. 1944, 65, 343. [Google Scholar] [CrossRef]
- Schwinger, J. On the classical radiation of accelerated electrons. Phys. Rev. 1949, 75, 1912–1925. [Google Scholar] [CrossRef]
- Bilderback, D.H.; Elleaume, P.; Weckert, E. Review of third and next generation synchrotron light sources. J. Phys. B At. Mol. Opt. Phys. 2005, 38, S773–S797. [Google Scholar] [CrossRef]
- Brown, G.; Halback, K.; Harris, J.; Winick, H. Wiggler and undulator magnets—A review. Nucl. Instrum. Methods 1983, 208, 65–77. [Google Scholar] [CrossRef]
- Eberhardt, W. Synchrotron radiation: A continuing revolution in X-ray science—Diffraction limited storage rings and beyond. J. Electron Spectrosc. 2015, 200, 31–39. [Google Scholar] [CrossRef]
- Barletta, W.A.; Winick, H. Introduction to special section on future light sources. Nucl. Instrum. Methods Phys. Res. A 2003, 500, 1–10. [Google Scholar] [CrossRef]
- Macrander, A.T.; Huang, X. Synchrotron X-ray optics. Annu. Rev. Mater. Res. 2017, 47, 135–152. [Google Scholar] [CrossRef]
- Website. Available online: https://lightsources.org/lightsources-of-the-world/ (accessed on 12 June 2019).
- Bergmann, U.; Manning, P.L.; Wogelius, R.A. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays. Annu. Rev. Anal. Chem. 2012, 5, 361–389. [Google Scholar] [CrossRef]
- Janssens, K.; Alfeld, M.; Van der Snickt, G.; De Nolf, W.; Vanmeert, F.; Radepont, M.; Miliani, C. The use of synchrotron radiation for the characterization of artists’ pigments and paintings. Annu. Rev. Anal. Chem. 2013, 6, 399–425. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guériau, P.; Bellato, M.; King, A.; Robbiola, L.; Thoury, M.; Thomas, A. Synchrotron-based phase mapping in corroded metals: Insights from early copper-base artifacts. Anal. Chem. 2019, 91, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- Castelli, E.; Tonutti, M.; Arfelli, F.; Longo, R.; Quaia, E.; Rigon, L.; Quai, E. Mammography with synchrotron radiation: First clinical experience with phase-detection technique. Radiology 2011, 259, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Varga, P.; Pacureanu, A.; Langer, M.; Suhonen, H.; Hesse, B.; Grimal, Q.; Cloetens, P.; Raum, K.; Peyrin, F. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater. 2013, 9, 8118–8127. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec, M.B.; Konstantinidis, A.C.; Tromba, G.; Dreossi, D.; Vecchio, S.; Rigon, L.; Olivo, A. Synchrotron based planar imaging and digital tomosynthesis of breast and biopsy phantoms using a CMOS active pixel sensor. Phys. Med. 2015, 31, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.A.; Goring, A.; Hesse, E.; Thurner, P.J.; Schneider, P.; Clarkin, C.E. Simultaneous visualization of calcified bone microstructure and intracortical vasculature using synchrotron X-ray phase contrast-enhanced tomography. Sci. Rep. 2017, 7, 13289. [Google Scholar] [CrossRef]
- Baran, P.; Pacile, S.; Nesterets, Y.I.; Mayo, S.C.; Dullin, C.; Dreossi, D.; Taba, S.T. Optimization of propagation-based X-ray phase-contrast tomography for breast cancer imaging. Phys. Med. Biol. 2017, 62, 2315–2332. [Google Scholar] [CrossRef]
- Almer, J.D.; Stock, S.R. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J. Struct. Biol. 2005, 152, 14–27. [Google Scholar] [CrossRef]
- Fan, J.; Sun, Z.; Zhang, J.; Huang, Q.; Yao, S.; Zong, Y.; Kohmura, Y.; Ishikawa, T.; Liu, H.; Jiang, H. Quantitative imaging of single unstained magnetotactic bacteria by coherent X-ray diffraction microscopy. Anal. Chem. 2015, 87, 5849–5853. [Google Scholar] [CrossRef]
- Yamamoto, M.; Hirata, K.; Yamashita, K.; Hasegawa, K.; Ueno, G.; Ago, H.; Kumasaka, T. Protein microcrystallography using synchrotron radiation. IUCrJ 2017, 4, 529–539. [Google Scholar] [CrossRef]
- Bräuer-Krisch, E.; Adam, J.-F.; Alagoz, E.; Bartzsch, S.; Crosbie, J.; DeWagter, C.; Kalef-Ezra, J. Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). Phys. Med. 2015, 31, 568–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potez, M.; Bouchet, A.; Wagner, J.; Donzelli, M.; Bräuer-Krisch, E.; Hopewell, J.W.; Laissue, J.; Djonov, V. Effects of synchrotron X-ray micro-beam irradiation on normal mouse ear pinnae. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 680–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donzelli, M.; Oelfke, U.; Bräuer-Krisch, E. Introducing the concept of spiral microbeam radiation therapy (spiralMRT). Phys. Med. Biol. 2019, 64, 065005. [Google Scholar] [CrossRef] [PubMed]
- Cole, A. Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiat. Res. 1969, 38, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Podgoršak, E.B. Radiation Physics for Medical Physicists, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 343–347. [Google Scholar]
- Berger, M.J.; Hubbell, J.H.; Seltzer, S.M.; Chang, J.; Coursey, J.S.; Sukumar, R.; Zucker, D.S.; Olsen, K. XCOM: Photon Cross Section Database; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The quantum theory of the emission and absorption of radiation. Proc. Royal Soc. 1927, 114, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Sayers, D.E.; Stern, E.A. New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys. Rev. Lett. 1971, 27, 1204–1207. [Google Scholar] [CrossRef]
- Gherase, M.R.; Desouza, E.D.; Farquharson, M.J.; McNeill, F.E.; Kim, C.-Y.; Fleming, D.E.B. X-ray fluorescence measurements of arsenic micro-distribution in human nail clippings using synchrotron radiation. Physiol. Meas. 2013, 34, 1163–1177. [Google Scholar] [CrossRef]
- Ponomarenko, O.; Gherase, M.R.; LeBlanc, M.S.; Kim, C.-Y.; Desouza, E.D.; Farquharson, M.J.; McNeill, F.E.; Nehzati, S.; Pickering, I.J.; George, G.N.; et al. Synchrotron X-ray absorption spectroscopy analysis of arsenic chemical speciation in human nail clippings. Environ. Chem. 2014, 11, 632–643. [Google Scholar] [CrossRef]
- Terai, T.; Nagano, T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflügers Arch. Eur. J. Physiol. 2013, 465, 347–359. [Google Scholar] [CrossRef]
- Pushie, M.J.; Pickering, I.J.; Korbas, M.; Hackett, M.J.; George, G.N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 2014, 114, 8499–8541. [Google Scholar] [CrossRef] [Green Version]
- Wobrauschek, P. Total reflection X-ray fluorescence analysis—A review. X-ray Spectrom. 2007, 36, 289–300. [Google Scholar] [CrossRef]
- Zebhe, R.; Haibel, A.; Riesemeier, H.; Gross, U.; Kirkpatrick, C.J.; Schubert, H.; Brochhausen, C. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: From tissue morphology to individual cells. J. R. Soc. Interface 2010, 7, 49–59. [Google Scholar] [CrossRef]
- Betz, O.; Wegst, U.; Weide, D.; Heethoff, M.; Helfen, L.; Lee, W.-K.; Cloetens, P. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimeter-sized arthropod structure. J. Microsc. 2007, 227, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Bournonville, S.; Vangruderbeeck, S.; Kerckofs, G. Contrast-enhanced microCT for virtual 3D anatomical pathology of biological tissues: A literature review. Contrast Media Mol. Imaging 2019, 2019, 8617406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakdinawat, A.; Attwood, D. Nanoscale X-ray imaging. Nat. Photonics 2010, 4, 840–848. [Google Scholar] [CrossRef]
- Van der Laan, G. Applications of soft X-ray magnetic dichroism. J. Phys. Conf. Ser. 2013, 430, 012127. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, F. X-ray ptychography. Nat. Photonics 2018, 12, 9–17. [Google Scholar] [CrossRef]
- Jones, M.W.M.; Hare, D.J.; James, S.A.; de Jonge, M.D.; McColl, G. Radiation dose limits for bioanalytical X-ray fluorescence microscopy. Anal. Chem. 2017, 89, 12168–12175. [Google Scholar] [CrossRef]
- Garman, E.F.; Weik, M. X-ray radiation damage to biological samples: Recent progress. J. Synchrotron Radiat. 2019, 26, 907–911. [Google Scholar] [CrossRef]
- Mettler, F.A.; Huda, W.; Yoshizumi, T.T.; Mahesh, M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 2008, 248, 254–263. [Google Scholar] [CrossRef]
- George, G.N.; Pickering, I.J.; Pushie, M.J.; Nienaber, K.; Hackett, M.J.; Ascone, I.; Hedman, B.; Hodgson, K.O.; Aitken, J.B.; Levina, A.; et al. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. J. Synchrotron Radiat. 2012, 19, 875–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiobiologist, 7th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Ross, C.K.; Klassen, N.V. Water calorimetry for radiation dosimetry. Phys. Med. Biol. 1996, 41, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Jarre, A.; Fuhse, C.; Ollinger, C.; Seeger, J.; Tucoulou, R.; Salditt, T. Two-dimensional hard X-ray beam compression by combined focusing and waveguide optics. Phys. Rev. Lett. 2005, 94, 074801. [Google Scholar] [CrossRef] [PubMed]
- Ice, G.E.; Budai, J.D.; Pang, J.W.L. The race to X-ray microbeam and nanobeam science. Science 2011, 334, 1234–1239. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Kim, H.; Park, S.Y. Hard X-ray nanotomography beamline 7C XNI at PLS-II. J. Synchrotron Radiat. 2014, 21, 827–831. [Google Scholar] [CrossRef]
- Paunesku, T.; Vogt, S.; Maser, J.; Lai, B.; Woloschak, G. X-ray fluorescence microprobe imaging in biology and medicine. J. Cell. Biochem. 2006, 99, 1489–1502. [Google Scholar] [CrossRef]
- Haraguchi, H. Metallomics as integrated biometal science. J. Anal. At. Spectrom. 2004, 19, 5–14. [Google Scholar] [CrossRef]
- Munro, K.L.; Mariana, A.; Klavins, A.I.; Foster, A.J.; Lai, B.; Vogt, S.; Cai, Z.; Harris, H.H.; Dillon, C.T. Microprobe XRF mapping and XAS investigations of intracellular metabolism of arsenic for understanding arsenic-induced toxicity. Chem. Res. Toxicol. 2008, 21, 1760–1769. [Google Scholar] [CrossRef]
- Yang, Y.; Fus, F.; Pacureanu, A.; da Silva, J.C.; De Nolf, W.; Biot, C.; Bohic, S.; Cloetens, P. Three-dimensional correlative imaging of a malaria-infected cell with a hard X-ray nanoprobe. Anal. Chem. 2019, 91, 6549–6554. [Google Scholar] [CrossRef]
- Victor, T.W.; Easthon, L.M.; Ge, M.; O’Toole, K.H.; Smith, R.J.; Huang, X.; Yan, H.; Allen, K.N.; Chu, Y.S.; Miller, L.M. X-ray fluorescence nanotomography of single bacteria with a sub-15 nm beam. Sci. Rep. 2018, 8, 13415. [Google Scholar] [CrossRef]
- Vine, D.J.; Pelliccia, D.; Holzner, C.; Baines, S.B.; Berry, A.; McNulty, I.; Vogt, S.; Peele, A.G.; Nugent, K.A. Simultaneous X-ray fluorescence and ptychographic microscopy of Cyclotella meneghiniana. Opt. Express 2012, 20, 18287–18296. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.M.; Hare, D.J.; Bohic, S.; James, S.A.; Billings, J.L.; Finkelstein, D.I.; Doble, P.A.; Double, K.L. Comparative study of metal quantification in neurological tissue using laser ablation-inductively coupled plasma-mass spectrometry imaging and X-ray fluorescence microscopy. Anal. Chem. 2015, 87, 6639–6645. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Nazaretski, E.; Lauer, K.; Huang, X.; Wagner, U.; Rau, C.; Yusuf, M.; Robinson, I.; Kalbfleisch, S.; Li, L.; et al. Multimodality hard-X-ray imaging of a chromosome with nanoscale spatial resolution. Sci. Rep. 2015, 6, 20112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, T.R.; Snow, E.T. Metal Ions and carcinogenesis. In Cancer: Cell Structures, Carcinogens and Genomic Instability; Bignold, L.P., Ed.; Birkhäuser Verlag: Basel, Switzerland, 2006; pp. 97–130. [Google Scholar]
- Snow, E.T. Metal carcinogenesis: Mechanistic implications. Pharmacol. Ther. 1992, 53, 31–65. [Google Scholar] [CrossRef]
- Hayes, R.B. The carcinogenicity of metals in humans. Cancer Causes Control 1997, 8, 371–385. [Google Scholar] [CrossRef]
- Ide-Ektessabi, A.; Fujisawa, S.; Sugimura, K.; Kitamura, Y.; Gotoh, A. Quantitative analysis of zinc in prostate cancer tissues using synchrotron radiation microbeams. X ray Spectrom. 2002, 31, 7–11. [Google Scholar] [CrossRef]
- Farquharson, M.J.; Al-Ebraheem, A.; Geraki, K.; Leek, R.; Jubb, A.; Harris, A.L. Zinc presence in invasive ductal carcinoma of the breast and its correlation with oestrogen receptor status. Phys. Med. Biol. 2009, 54, 4213–4223. [Google Scholar] [CrossRef]
- Geraki, K.; Farquharson, M.J.; Bradley, D.A.; Hugtenburg, R.P. A synchrotron XRF study on trace elements and potassium in breast tissue. Nucl. Instrum. Methods Phys. Res. B 2004, 213, 564–568. [Google Scholar] [CrossRef]
- Farquharson, M.J.; Geraki, K.; Falkenberg, G.; Leek, R.; Harris, A. The localization and micro-mapping of copper and other trace elements in breast tumours using a synchrotron micro-XRF system. Appl. Radiat. Isot. 2007, 65, 183–188. [Google Scholar] [CrossRef]
- Geraki, K.; Farquharson, M.J.; Bradley, D.A.; Gundogdu, O.; Falkenberg, G. The localization of biologically important metals in soft and calcified tissues using a synchrotron X-ray fluorescence technique. X ray Spectrom. 2008, 37, 12–20. [Google Scholar] [CrossRef]
- Silva, M.P.; Tomal, A.; Pérez, C.A.; Ribeiro-Silva, A.; Poletti, M.E. Determination of Ca, Fe, Cu and Zn and their correlations in breast cancer and normal adjacent tissues. X ray Spectrom. 2008, 38, 103–111. [Google Scholar] [CrossRef]
- Al-Ebraheem, A.; Farquharson, M.J.; Ryan, E. The evaluation of biologically important trace metals in liver, kidney and breast tissue. Appl. Radiat. Isot. 2009, 67, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Farquharson, M.J.; Al-Ebraheem, A.; Theodorakou, C.; Ryan, E.; Bradley, D.A.; Gurusamy, K.; Davidson, B. Measurement of K, Fe, Cu and Zn levels in secondary colorectal liver cancer and surrounding normal liver tissue, and their potential as a tissue classifier. X ray Spectrom. 2009, 38, 81–88. [Google Scholar] [CrossRef]
- Kwiatek, K.M.; Hanson, A.L.; Paluszkiewicz, C.; Galka, M.; Gajda, M.; Cichocki, T. Application of SRIXE and XANES to the determination of the oxidation state of iron in prostate tissue sections. J. Alloy Compd. 2004, 362, 83–87. [Google Scholar] [CrossRef]
- Al-Ebraheem, A.; Goettlicher, J.; Geraki, K.; Ralph, S.; Farquharson, M.J. The determination of zinc, copper and iron oxidation state in invasive ductal carcinoma of breast tissue and normal surrounding tissue using XANES. X ray Spectrom. 2010, 39, 332–337. [Google Scholar] [CrossRef]
- Podgórczyk, M.; Kwiatek, W.M.; Zajac, W.M.; Dulinska-Litewka, J.; Welter, E.; Grolimundd, D. Zinc in native tissues and cultured cell lines of human prostate studied by SR-XRF and XANES. X ray Spectrom. 2009, 38, 557–562. [Google Scholar] [CrossRef]
- Weekley, C.M.; Aitken, J.B.; Vogt, S.; Finney, L.A.; Paterson, D.J.; de Jonge, M.D.; Howard, D.L.; Witting, P.K.; Musgrave, I.F.; Harris, H.H. Metabolism of selenite in human lung cancer cells: X-ray absorption and fluorescence studies. J. Am. Chem. Soc. 2011, 133, 18272–18279. [Google Scholar] [CrossRef] [Green Version]
- Pascolo, L.; Gianoncelli, A.; Schneider, G.; Salomé, M.; Schneider, M.; Calligaro, C.; Kiskinova, M.; Melato, M.; Rizzardi, C. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci. Rep. 2012, 3, 1123. [Google Scholar] [CrossRef] [Green Version]
- Popescu, B.F.G.; George, M.J.; Bergmann, U.; Garachtchenko, A.V.; Kelly, M.E.; McCrea, R.P.E.; Lüning, K.; Devon, R.M.; George, G.N.; Hanson, A.D.; et al. Mapping metals in Parkinson’s and normal brain using rapid-scanning X-ray fluorescence. Phys. Med. Biol. 2009, 45, 651–663. [Google Scholar] [CrossRef]
- Miller, L.M.; Wang, Q.; Telivala, T.P.; Smith, R.J.; Lanzirotti, A.; Miklossy, J. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J. Struct. Biol. 2006, 155, 30–37. [Google Scholar] [CrossRef]
- Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Dobson, J. In situ characterization and mapping of iron compounds in Alzheimer’s disease tissue. J. Alzheimers Dis. 2005, 7, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Collingwood, J.F.; Chong, R.K.K.; Kasama, T.; Cervera-Gontard, L.; Dunin-Borkowski, R.E.; Perry, G.; Pósfai, M.; Siedlak, S.L.; Simpson, E.T.; Smith, M.A.; et al. Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. J. Alzheimers Dis. 2008, 14, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telling, N.D.; Everett, J.; Collingwood, J.F.; Dobson, J.; van der Laan, G.; Gallagher, J.J.; Wang, J.; Hitchcock, A.P. Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease. Cell Chem. Biol. 2017, 24, 1205–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, K.L.; Fimognari, N.; Hollings, A.; Kiernan, M.; Lam, V.; Tidy, R.J.; Paterson, D.; Tobin, M.J.; Takechi, R.; George, G.N.; et al. A multimodal spectroscopic imaging method to characterize the metal and macromolecular content of proteinaceous aggregates (“amyloid plaques”). Biochemistry 2017, 56, 4107–4116. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.; Zakharova, T.; Fu, S.; Jiang, W.; Fulper, R.; Barrea, R.; Marcus, M.A.; Zheng, W.; Pushkar, Y. X-ray fluorescence imaging: A new tool for studying manganese neurotoxicity. PLoS ONE 2012, 7, e48899. [Google Scholar] [CrossRef] [Green Version]
- Zoeger, N.; Wobrauschek, P.; Streli, C.; Pepponi, G.; Roschger, P.; Falkenberg, G.; Osterode, W. Distribution of Pb and Zn in slice of human bone by synchrotron µ-XRF. X ray Spectrom. 2005, 34, 140–143. [Google Scholar] [CrossRef]
- Zoeger, N.; Roschger, P.; Hofstaetter, J.G.; Jokubonis, C.; Pepponi, G.; Falkenberg, G.; Fratzl, P.; Berzlanovich, A.; Osterode, W.; Streli, C.; et al. Lead accumulation in tidemark of articular cartilage. Osteoarthr. Cartilage 2006, 14, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Hofstaetter, J.; Berzlanovich, A.; Wegrzynek, D.; Chinea-Cano, E.; et al. Determination of the elemental distribution in human joint bones by SR micro XRF. X ray Spectrom. 2008, 37, 3–11. [Google Scholar] [CrossRef]
- Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C. Spatial distribution of the trace elements zinc, strontium, and lead in human bone. Bone 2013, 57, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Rauwolf, M.; Pemmer, B.; Roschger, A.; Turyanskaya, A.; Smolek, S.; Maderitsch, A.; Hischenhuber, P.; Foelser, M.; Simon, R.; Lang, S.; et al. Increased zinc accumulation in mineralized osteosarcoma tissue measured by confocal synchrotron radiation micro X-ray fluorescence analysis. X ray Spectrom. 2017, 46, 56–62. [Google Scholar] [CrossRef]
- Streli, C.; Rauwolf, M.; Turyanskaya, A.; Ingerle, D.; Wobrauschek, P. Elemental imaging of trace elements in bone samples using micro and nano-X-ray fluorescence spectrometry. Appl. Radiat. Isot. 2019, 149, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Roschger, P.; Fratzl, P.; Eschberger, J.; Klaushofer, K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 1998, 23, 319–326. [Google Scholar] [CrossRef]
- Ektessabi, A.; Shikine, S.; Kitamura, N.; Rokkum, M.; Johansson, C. Distribution and chemical states of iron and chromium released from orthopedic implants into human tissues. X ray Spectrom. 2001, 30, 44–48. [Google Scholar] [CrossRef]
- Guerra, C.S.; Gerlach, R.F.; Pinto, N.G.V.; Cardoso, S.C.; Moreira, S.; Almeida, A.P.; Peixoto, I.T.A.; Meloni, C.H.; Mota, C.L.; Oliveira, L.F.; et al. X-ray fluorescence with synchrotron radiation to elemental analysis of lead and calcium content of primary teeth. Appl. Radiat. Isot. 2010, 68, 71–75. [Google Scholar] [CrossRef]
- Guerra, C.S.; Barroso, R.C.; Almeida, A.P.; Peixoto, I.T.A.; Moreira, S.; Sousa, F.B.; Gerlach, R.F. Anatomical variations in primary teeth microelements with known difference in lead content by micro-Synchrotron Radiation X-ray Fluorescence (µ-SRXRF)—A preliminary study. J. Trace Elem. Med. Biol. 2014, 28, 186–193. [Google Scholar] [CrossRef]
- Wang, Y.; Specht, A.; Liu, Y.; Finney, L.; Maxey, E.; Vogt, S.; Zheng, W.; Weisskopf, M.; Nie, L.H. Microdistribution of lead in human teeth using microbeam synchrotron radiation X-ray fluorescence (µ-SRXRF). X ray Spectrom. 2017, 46, 19–26. [Google Scholar] [CrossRef]
- Gianoncelli, A.; Rizzardi, C.; Salomon, D.; Canzonieri, V.; Pascolo, L. Nano-imaging of environmental dust in human lung tissue by soft and hard X-ray fluorescence microscopy. Spectrochim. Acta B 2018, 147, 71–78. [Google Scholar] [CrossRef]
- Carpentier, X.; Bazin, D.; Jungers, P.; Reguer, S.; Thiaudière, D.; Daudon, M. The pathogenesis of Randall’s plaque: A papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy. J. Synchrotron. Radiat. 2010, 175, 374–379. [Google Scholar] [CrossRef]
- Iida, A.; Noma, T. Synchrotron X-ray microprobe and its application to human hair analysis. Nucl. Instrum. Methods B 1993, 82, 129. [Google Scholar] [CrossRef]
- Martin, R.R.; Kempson, I.M.; Naftel, S.J.; Skinner, W.M. Preliminary synchrotron analysis of lead in hair from a lead smelter worker. Chemosphere 2005, 58, 1385. [Google Scholar] [CrossRef]
- Chevallier, P.; Ricordel, I.; Meyer, G. Trace element determination in hair by synchrotron X-ray fluorescence analysis: Application to the hair of Napoleon I. X ray Spectrom. 2006, 35, 125. [Google Scholar] [CrossRef]
- Kakoulli, I.; Prikhodko, S.V.; Fischer, C.; Cilluffo, M.; Uribe, M.; Bechtel, H.A.; Fakra, S.C.; Marcus, M.A. Distribution and chemical speciation of arsenic in ancient human hair using synchrotron radiation. Anal. Chem. 2014, 86, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, S.J.; Webb, S.M.; Abraham, J.L.; Cramer, S.P. Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br. J. Dermatol. 2010, 163, 1077. [Google Scholar] [CrossRef] [PubMed]
- Desouza, E.D.; Abu Atiya, I.; Al-Ebraheem, A.; Wainman, B.C.; Fleming, D.E.B.; McNeill, F.E.; Farquharson, M.J. Characterization of the depth distribution of Ca, Fe and Zn in skin samples, using synchrotron micro-X-ray fluorescence (SµXRF) to help quantify in-vivo measurements of elements in the skin. Appl. Radiat. Isot. 2013, 77, 68. [Google Scholar] [CrossRef] [PubMed]
- Schreiver, I.; Hesse, B.; Seim, C.; Castillo-Michel, H.; Villanova, J.; Laux, P.; Dreiack, N.; Penning, R.; Tucoulou, R.; Cotte, M.; et al. Synchrotron-based ν-XRF mapping and µ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin. Sci. Rep. 2017, 7, 11395. [Google Scholar] [CrossRef]
- Mahmoud, N.N.; Harfouche, M.; Alkilany, A.M.; Al-Bakri, A.G.; El-Qirem, R.A.; Shraim, S.A.; Khalil, E.A. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloid Surf. B 2018, 165, 118. [Google Scholar] [CrossRef]
- Katsikini, M.; Mavromati, E.; Pinakidou, F.; Paloura, E.C.; Gioulekas, D. Zn-K edge EXAFS study of human nails. J. Phys. Conf. Ser. 2009, 190, 012204. [Google Scholar] [CrossRef]
- Katsikini, M.; Pinakidou, F.; Mavromati, E.; Paloura, E.C.; Gioulekas, D.; Grolimund, D. Fe distribution and speciation in human nails. Nucl. Instrum. Methods B 2010, 268, 420. [Google Scholar] [CrossRef]
- Pearce, D.C.; Dowling, K.; Gerson, A.R.; Sim, M.R.; Sutton, S.R.; Newville, M.; Russell, R.; McOrist, G. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Sci. Total Environ. 2010, 408, 2590. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.R.; McBeth, J.M.; Sylvain, N.J.; Spence, J.; Chan, H.M. Hartnell’s time machine: 170-year-old nails reveal severe zinc deficiency played a greater role than lead in the demise of the Franklin Expedition. J. Archaeol. Sci. Rep. 2017, 16, 430. [Google Scholar] [CrossRef]
Method | Acronym | Principles | References |
---|---|---|---|
X-ray Microtomography | CT | Absorption contrast: differences in the X-ray linear attenuation coefficients. Phase contrast: interference of forward scattered X-rays. Contrast enhanced: addition of contrast agents to highlight targeted morphology. | Zehbe et al. [35] Betz et al. [36] Bournonville et al. [37] |
Scanning Transmission X-ray Microscopy | STXM | X-ray microscopy technique in which a sample is scanned in the plane between an SR source and an X-ray detector. The plane is perpendicular to the X-ray beam direction and in the focal point of the X-ray lens. | Sakdinawat and Atwood [38] |
X-ray Magnetic Circular Dichroism | XMCD | X-ray technique probing the magnetic state of materials. The measurement principle exploits the X-ray absorption differences between the left- and right-circularly polarized X-rays which arise from spin-orbit interactions of core-level atomic electrons. | van der Laan [39] |
X-ray Ptychography (from Greek meaning ‘to fold’) | N/A | An iterative algorithm reconstructing amplitude and phase images from data sets obtained from the 2D detection of transmitted and forward-scattered X-rays from a scanning experiment. | Pfeiffer [40] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gherase, M.R.; Fleming, D.E.B. Probing Trace Elements in Human Tissues with Synchrotron Radiation. Crystals 2020, 10, 12. https://doi.org/10.3390/cryst10010012
Gherase MR, Fleming DEB. Probing Trace Elements in Human Tissues with Synchrotron Radiation. Crystals. 2020; 10(1):12. https://doi.org/10.3390/cryst10010012
Chicago/Turabian StyleGherase, Mihai R., and David E. B. Fleming. 2020. "Probing Trace Elements in Human Tissues with Synchrotron Radiation" Crystals 10, no. 1: 12. https://doi.org/10.3390/cryst10010012
APA StyleGherase, M. R., & Fleming, D. E. B. (2020). Probing Trace Elements in Human Tissues with Synchrotron Radiation. Crystals, 10(1), 12. https://doi.org/10.3390/cryst10010012