X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3
Abstract
:1. Introduction
2. Materials and Methods—Smart Tips and SX-STM Instrumentation
2.1. Smart Tips
2.1.1. Insulator-Coated CNT Smart Tips
2.1.2. Coaxially Shielded STM Tips
2.2. SX-STM Instrumentation and Methods
3. Results and Discussions of Applications—SX-STM Spectroscopy and Preliminary Elemental Mapping on ZrTe3 Single Crystal
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy. IBM J. Res. Dev. 1986, 30, 355–369. [Google Scholar]
- Tanaka, N. Electron Nano-Imaging: Basics of Imaging and Diffraction for TEM and STEM; Springer: Heidelbeg, Germany, 2017; ISBN 9784431565000. [Google Scholar]
- Chan, Y.L.; Liang, X.; Wu, T.H.; Lu, D.A.; Luo, M.F.; Hsu, Y.J.; Wei, D.H. The development of synchrotron-assisted scanning probe microscopy at NSRRC. J. Phys. Conf. Ser. 2013, 463, 012035. [Google Scholar] [CrossRef]
- Matsushima, T.; Okuda, T.; Eguchi, T.; Ono, M.; Harasawa, A.; Wakita, T.; Kataoka, A.; Hamada, M.; Kamoshida, A.; Hasegawa, Y.; et al. Development and trial measurement of synchrotron-radiation-light-illuminated scanning tunneling microscope. Rev. Sci. Instrum. 2004, 75, 2149–2153. [Google Scholar] [CrossRef]
- Saito, A.; Maruyama, J.; Manabe, K.; Kitamoto, K.; Takahashi, K.; Takami, K.; Yabashi, M.; Tanaka, Y.; Miwa, D.; Ishii, M.; et al. Development of a scanning tunneling microscope for in situ experiments with a synchrotron radiation hard-X-ray microbeam. J. Synchrotron Radiat. 2006, 13, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Rose, V.; Freeland, J.W.; Gray, K.E.; Streiffer, S.K. X-ray-excited photoelectron detection using a scanning tunneling microscope. Appl. Phys. Lett. 2008, 92, 193510. [Google Scholar] [CrossRef]
- Nazaretski, E.; Yan, H.; Lauer, K.; Bouet, N.; Huang, X.; Xu, W.; Zhou, J.; Shu, D.; Hwu, Y.; Chu, Y.S.; et al. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II. J. Synchrotron Radiat. 2017, 24, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bouet, N.; Zhou, J.; Huang, X.; Nazaretski, E.; Xu, W.; Cocco, A.P.; Chiu, W.K.S.; Brinkman, K.S.; Chu, Y.S. Multimodal hard X-ray imaging with resolution approaching 10 nm for studies in material science. Nano Futures 2018, 2, 011001. [Google Scholar] [CrossRef]
- Akiyama, K.; Eguchi, T.; An, T.; Hasegawa, Y.; Okuda, T.; Harasawa, A.; Kinoshita, T. Fabrication of a glass-coated metal tip for synchrotron-radiation-light- irradiated scanning tunneling microscopy. Rev. Sci. Instrum. 2005, 76, 083711. [Google Scholar] [CrossRef]
- Saito, A.; Takahashi, K.; Takagi, Y.; Nakamatsu, K.; Hanai, K.; Tanaka, Y.; Miwa, D.; Akai-kasaya, M.; Shin, S.; Matsui, S.; et al. Study for noise reduction in synchrotron radiation based scanning tunneling microscopy by developing insulator-coat tip. Surf. Sci. 2007, 601, 5294–5299. [Google Scholar] [CrossRef]
- Rose, V.; Wang, K.; Chien, T.; Hiller, J.; Rosenmann, D.; Freeland, J.W.; Preissner, C.; Hla, S.W. Synchrotron X-ray scanning tunneling microscopy: Fingerprinting near to far field transitions on Cu(111) induced by synchrotron radiation. Adv. Funct. Mater. 2013, 23, 2646–2652. [Google Scholar] [CrossRef]
- Rose, V.; Chien, T.Y.; Hiller, J.; Rosenmann, D.; Winarski, R.P. X-ray nanotomography of SiO2-coated Pt90Ir10 tips with sub-micron conducting apex. Appl. Phys. Lett. 2011, 99, 2011–2014. [Google Scholar] [CrossRef]
- Shirato, N.; Cummings, M.; Kersell, H.; Li, Y.; Stripe, B.; Rosenmann, D.; Hla, S.W.; Rose, V. Elemental fingerprinting of materials with sensitivity at the atomic limit. Nano Lett. 2014, 14, 6499–6504. [Google Scholar] [CrossRef] [PubMed]
- Jug, N.; Prodan, A.; van Midden, H.J.P.; Starowicz, P.; Böhm, H.; Boswell, F.W.; Bennett, J.C. Competition between surface reaction and diffusion of gold deposited onto ZrTe3. Surf. Sci. 2003, 531, 375–381. [Google Scholar] [CrossRef]
- Eguchi, T.; Okuda, T.; Matsushima, T.; Kataoka, A.; Harasawa, A.; Akiyama, K.; Kinoshita, T.; Hasegawa, Y.; Kawamori, M.; Haruyama, Y.; et al. Element specific imaging by scanning tunneling microscopy combined with synchrotron radiation light. Appl. Phys. Lett. 2006, 89, 243119. [Google Scholar] [CrossRef]
- Chang, H.; Cummings, M.; Shirato, N.; Stripe, B.; Rosenmann, D.; Preissner, C.; Freeland, J.W.; Kersell, H.; Hla, S.-W.; Rose, V. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy. AIP Conf. Proc. 2016, 1696, 020001. [Google Scholar] [Green Version]
- Mom, R.V.; Onderwaater, W.G.; Rost, M.J.; Jankowski, M.; Wenzel, S.; Jacobse, L.; Alkemade, P.F.A.; Vandalon, V.; van Spronsen, M.A.; van Weeren, M.; et al. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment. Ultramicroscopy 2017, 182, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Cummings, M.; Camino, F.; Xu, W.; Lu, M.; Tong, X.; Shirato, N.; Rosenmann, D.; Rose, V.; Nazaretski, E. Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM. J. Nanomater. 2015, 2015, 492657. [Google Scholar] [CrossRef]
- Cummings, M.; Shirato, N.; Kersell, H.; Chang, H.; Rosenmann, D.; Freeland, J.W.; Miller, D.; Hla, S.-W.; Rose, V. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips. J. Appl. Phys. 2017, 121, 015305. [Google Scholar] [CrossRef]
- Kersell, H.; Shirato, N.; Cummings, M.; Chang, H.; Miller, D.; Rosenmann, D.; Hla, S.W.; Rose, V. Detecting element specific electrons from a single cobalt nanocluster with synchrotron X-ray scanning tunneling microscopy. Appl. Phys. Lett. 2017, 111, 103102. [Google Scholar] [CrossRef]
- Shirato, N.; Cummings, M.; Kersell, H.; Li, Y.; Miller, D.; Rosenmann, D.; Hla, S.-W.; Rose, V. Hard X-ray beam damage study of monolayer Ni islands using SX-STM. MRS Online Proc. Libr. 2015, 1754, 135–140. [Google Scholar] [CrossRef]
- Chang, H.; Shirato, N.; Zhang, Y.; Hoffman, J.; Rosenmann, D.; Freeland, J.W.; Bhattacharya, A.; Rose, V.; Hla, S.W. X-ray magnetic circular dichroism and near-edge X-ray absorption fine structure of buried interfacial magnetism measured by using a scanning tunneling microscope tip. Appl. Phys. Lett. 2018, 113, 061602. [Google Scholar] [CrossRef]
- DiLullo, A.; Shirato, N.; Cummings, M.; Kersell, H.; Chang, H.; Rosenmann, D.; Miller, D.; Freeland, J.W.; Hlaa, S.W.; Rosea, V. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip. J. Synchrotron Radiat. 2016, 23, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Mirkin, M.V. Scanning Electrochemical Microscopy; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439831120. [Google Scholar]
- Wang, K.; Rosenmann, D.; Holt, M.; Winarski, R.; Hla, S.W.; Rose, V. An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy. Rev. Sci. Instrum. 2013, 84, 063704. [Google Scholar] [CrossRef] [PubMed]
- Daou, R.; Chang, J.; LeBoeuf, D.; Cyr-Choinière, O.; Laliberté, F.; Doiron-Leyraud, N.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; Hardy, W.N.; et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 2010, 463, 519–522. [Google Scholar] [CrossRef]
- Gabovich, A.M.; Voitenko, A.I.; Ekino, T.; Li, M.S.; Szymczak, H.; Pȩkała, M. Competition of superconductivity and charge density waves in cuprates: Recent evidence and interpretation. Adv. Condens. Matter Phys. 2010, 2010, 681070. [Google Scholar] [CrossRef]
- Maksimov, E.G.; Kulić, M.L.; Dolgov, O.V. Bosonic Spectral Function and the Electron-Phonon Interaction in HTSC Cuprates. Adv. Condens. Matter Phys. 2010, 2010, 423725. [Google Scholar] [CrossRef]
- Takahashi, S.; Sambongi, T.; Brill, J.W.; Roark, W. Transport and elastic anomalies in ZrTe3. Solid State Commun. 1984, 49, 1031–1034. [Google Scholar] [CrossRef]
- Mirri, C.; Dusza, A.; Zhu, X.; Lei, H.; Ryu, H.; Degiorgi, L.; Petrovic, C. Excitation spectrum in Ni- and Cu-doped ZrTe3. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 035144. [Google Scholar] [CrossRef]
- Nakajima, H.; Nomura, K.; Sambongi, T. Anisotropic superconducting transition in ZrTe3. Phys. B+C 1986, 143, 240–242. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, H.; Petrovic, C. Coexistence of Bulk Superconductivity and Charge Density Wave in CuxZrTe3. Phys. Rev. Lett. 2011, 106, 246404. [Google Scholar] [CrossRef] [PubMed]
- Eaglesham, D.J.; Steeds, J.W.; Wilson, J.A. Electron microscope study of superlattices in ZrTe3. J. Phys. C Solid State Phys. 1984, 17, L697–L698. [Google Scholar] [CrossRef]
- Yadav, C.S.; Paulose, P.L. Superconductivity at 5.2 K in ZrTe3 polycrystals and the effect of Cu and Ag intercalation. J. Phys. Condens. Matter 2012, 24, 235702. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Zhu, X.; Petrovic, C. Raising Tc in charge density wave superconductor ZrTe3 by Ni intercalation. EPL (Europhys. Lett.) 2011, 95, 17011. [Google Scholar] [CrossRef]
- Prodan, A.; Marinković, V.; Jug, N.; van Midden, H.J.P.; Böhm, H.; Boswell, F.W.; Bennett, J.C. The surface structure and charge distribution of ZrSe3 and ZrTe3. Surf. Sci. 2001, 482–485, 1368–1373. [Google Scholar] [CrossRef]
- Stöwe, K.; Wagner, F.R. Crystal Structure and Calculated Electronic Band Structure of ZrTe3. J. Solid State Chem. 1998, 138, 160–168. [Google Scholar] [CrossRef]
- Rose, V.; Chien, T.Y.; Freeland, J.W.; Rosenmann, D.; Hiller, J.; Metlushko, V. Spin-dependent synchrotron X-ray excitations studied by scanning tunneling microscopy. J. Appl. Phys. 2012, 111, 07E304. [Google Scholar] [CrossRef]
- Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast. Ultramicroscopy 2012, 112, 22–31. [Google Scholar] [CrossRef]
- Okuda, T.; Eguchi, T.; Akiyama, K.; Harasawa, A.; Kinoshita, T.; Hasegawa, Y.; Kawamori, M.; Haruyama, Y.; Matsui, S. Nanoscale chemical imaging by scanning tunneling microscopy assisted by synchrotron radiation. Phys. Rev. Lett. 2009, 102, 105503. [Google Scholar] [CrossRef]
- Saito, A.; Takagi, Y.; Takahashi, K.; Hosokawa, H.; Hanai, K.; Tanaka, T.; Akai-kasaya, M.; Tanaka, Y.; Shin, S.; Ishikawa, T.; et al. Nanoscale elemental identification by synchrotron-radiation-based scanning tunneling microscopy. Surf. Interface Anal. 2008, 40, 1033–1036. [Google Scholar] [CrossRef]
- Luo, L.; LaCoste, J.D.; Khamidullina, N.G.; Fox, E.; Gang, D.D.; Hernandez, R.; Yan, H. Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS. Surf. Sci. 2020, 691, 121486. [Google Scholar] [CrossRef]
- Li, W.; Zhao, R.; Zhou, K.; Shen, C.; Zhang, X.; Wu, H.; Ni, L.; Yan, H.; Diao, G.; Chen, M. Cage-structured MxPy @CNCs (M = Co and Zn) from MOF confined growth in carbon nanocages for superior lithium storage and hydrogen evolution performance. J. Mater. Chem. A 2019, 7, 8443–8450. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, R.; Wu, Q.; Li, W.; Shen, C.; Ni, L.; Yan, H.; Diao, G.; Chen, M. Ultrathin WS2 nanosheets vertically embedded in a hollow mesoporous carbon framework-a triple-shell structure with enhanced lithium storage and electrocatalytic properties. J. Mater. Chem. A 2018, 6, 19004–19012. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, R.; Wu, Q.; Li, W.; Shen, C.; Ni, L.; Yan, H.; Diao, G.; Chen, M. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced Lithium Storage Performance. ACS Nano 2017, 11, 8429–8436. [Google Scholar] [CrossRef]
X-ray | Beam on | Beam off |
---|---|---|
Far field (no tunneling) | ISX-STM = Iphoto-ejected, X-ray | 0 |
Near field (tunneling, d ≤ 1 nm) | ISX-STM = Itunneling + Itunneling, X-ray + Iphoto-ejected, X-ray | ISX-STM = Itunneling |
Tips | Beamline | X-ray Energy (keV), Photon Flux (photons·s−1 mm−2) | STM Operation Temperature (T) | Pressure | Application-Materials | Remarks |
---|---|---|---|---|---|---|
PtIr-SiO2-Ti/Au | ID-26, APS | 7.696–7.717 | Room T | UHV, <10−9 Torr | Co/Au(111) | [21] |
PtIr-SiO2-Ti/Au | ID-26, APS | 8.45–8.85 | Room T | UHV | Ni/Cu(111) | No X-ray damage to Ni islands [22] |
PtIr-SiO2-Ti/Au | ID-26, APS | 8–9, 1013 | Room T | UHV | Ni/Cu(111) | 2 nm lateral resolution [14] |
PtIr-SiO2-Ti/Au | 4-ID-C, 4-ID-E, APS | 0.630–0.876, 8×1011 | Low T | UHV | La0.67Sr0.33MnO3-LaNiO3 superlattices | XMCD interfacial magnetism [23] |
PtIr-SiO2-Ti/Au | 4-ID-C, 4-ID-E, APS | 0.690–0.725 | Room T | UHV | Fe/Cu(111) | XMCD [24] |
PtIr-SiO2-Ti/Au | ID-26, APS | 8.92–9.08, 1013 | Room T | UHV | Cu0.05ZrTr3 | This work, Super-conductor |
PtIr-SiO2 (or polymer)-Ti/Au | ID03, ESRF | 12.1, 1013 | Room T | 608 Torr Ar | Au(111) | First operando SX-STM [18] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Shirato, N.; Zhu, X.; Rosenmann, D.; Tong, X.; Xu, W.; Petrovic, C.; Rose, V.; Nazaretski, E. X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3. Crystals 2019, 9, 588. https://doi.org/10.3390/cryst9110588
Yan H, Shirato N, Zhu X, Rosenmann D, Tong X, Xu W, Petrovic C, Rose V, Nazaretski E. X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3. Crystals. 2019; 9(11):588. https://doi.org/10.3390/cryst9110588
Chicago/Turabian StyleYan, Hui, Nozomi Shirato, Xiangde Zhu, Daniel Rosenmann, Xiao Tong, Weihe Xu, Cedomir Petrovic, Volker Rose, and Evgeny Nazaretski. 2019. "X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3" Crystals 9, no. 11: 588. https://doi.org/10.3390/cryst9110588
APA StyleYan, H., Shirato, N., Zhu, X., Rosenmann, D., Tong, X., Xu, W., Petrovic, C., Rose, V., & Nazaretski, E. (2019). X-ray Assisted Scanning Tunneling Microscopy and Its Applications for Materials Science: The First Results on Cu Doped ZrTe3. Crystals, 9(11), 588. https://doi.org/10.3390/cryst9110588