Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Organic Co-Precipitated Aragonite
2.2.1. Aragonite Seed Preparation
2.2.2. Co-Precipitation Experiment
2.3. Characterization
3. Results and Discussion
3.1. Characterization of Aragonite Seeds
3.2. Characterization of Organic Co-Precipitated Aragonite
3.2.1. XRD
3.2.2. TEM/SAED
3.2.3. HPLC
3.2.4. SEM
3.2.5. FT-IR
3.2.6. TG-DSC
3.3. Theoretical Speciation Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, K.M.; Bhattacharya, P.; Hasan, M.A.; Akhter, S.H.; Alam, S.M.; Bhuyian, M.H.; Iman, M.B.; Khan, A.A.; Sracek, O. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Appl. Geochem. 2004, 19, 181–200. [Google Scholar] [CrossRef]
- de Leeuw, N.H.; Parker, S.C. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem. B 1998, 102, 2914–2922. [Google Scholar] [CrossRef]
- Fellner, P.; Jurisova, J.; Pach, L. Preparation of needle-like aragonite particles from calcium nitrate solution. Acta Chim. Slovaca 2011, 4, 3–10. [Google Scholar]
- Santos, R.M.; Ceulemans, P.; Van Gerven, T. Synthesis of pure aragonite by sonochemical mineral carbonation. Chem. Eng. Res. Des. 2012, 90, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Qin, Z.; Qian, P.; Yu, P.; Cui, S.; Wang, W. Crystallization of aragonite CaCO3 with complex structures. Adv. Powder Technol. 2011, 22, 777–783. [Google Scholar] [CrossRef]
- Wang, L.; Sondi, I.; Matijević, E. Preparation of uniform needle-like aragonite particles by homogeneous precipitation. J. Colloid Interface Sci. 1999, 218, 545–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thenepalli, T.; Jun, A.Y.; Han, C.; Ramakrishna, C.; Ahn, J.W. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean J. Chem. Eng. 2015, 32, 1009–1022. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Ma, H. Synthesis of aragonite by carbonization from dolomite without any additives. Int. J. Miner. Process. 2013, 123, 25–31. [Google Scholar] [CrossRef]
- Wada, S.; Suzuki, H. Calcite and fluorite as catalyst for the Knövenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions. Tetrahedron Lett. 2003, 44, 399–401. [Google Scholar] [CrossRef]
- Matsumoto, M.; Fukunaga, T.; Onoe, K. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chem. Eng. Res. Des. 2010, 88, 1624–1630. [Google Scholar] [CrossRef]
- Europe, C.C.A. Mineral Applications. 2011. Available online: https://www.ima-europe.eu/about-industrial-minerals/industrial-minerals-ima-europe/calcium-carbonate (accessed on 26 September 2020).
- El-Sheikh, S.M.; El-Sherbiny, S.; Barhoum, A.; Deng, Y. Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloid Surface A 2013, 422, 44–49. [Google Scholar] [CrossRef]
- Han, Y.S.; Hadiko, G.; Fuji, M.; Takahashi, M. Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method. J. Eur. Ceram. Soc. 2006, 26, 843–847. [Google Scholar] [CrossRef]
- Park, W.K.; Ko, S.J.; Lee, S.W.; Cho, K.H.; Ahn, J.W.; Han, C. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. J. Cryst. Growth 2008, 310, 2593–2601. [Google Scholar] [CrossRef]
- MacDonald, G.J. Experimental determination of calcite-aragonite equilibrium relations at elevated temperatures and pressures. Am. Mineral. 1956, 41, 744–756. [Google Scholar]
- De Choudens-Sanchez, V.; Gonzalez, L.A. Calcite and aragonite precipitation under controlled instantaneous supersaturation: Elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism. J. Sediment. Res. 2009, 79, 363–376. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W.; Han, Y. Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate. Particuology 2013, 11, 301–308. [Google Scholar] [CrossRef]
- Zhou, G.T.; Yao, Q.Z.; Ni, J.; Jin, G. Formation of aragonite mesocrystals and implication for biomineralization. Am. Mineral. 2009, 94, 293–302. [Google Scholar] [CrossRef]
- Liu, R.; Xu, X.; Cai, Y.; Cai, A.; Pan, H.; Tang, R.; Cho, K. Preparation of calcite and aragonite complex layer materials inspired from biomineralization. Cryst. Growth Des. 2009, 9, 3095–3099. [Google Scholar] [CrossRef]
- Han, Y.; Sun, B.; Yan, H.; Tucker, M.E.; Zhao, Y.; Zhou, J.; Zhao, Y.; Zhao, H. Biomineralization of Carbonate Minerals Induced by The Moderate Halophile Staphylococcus Warneri YXY2. Crystals 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.Y.; Ganesan, K.; Yang, P.; Kulak, A.N.; Borukhin, S.; Pechook, S.; Ribeiro, L.; Kröger, R.; Eichhorn, S.J.; Armes, S.P.; et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater. 2011, 10, 890–896. [Google Scholar] [CrossRef]
- Currey, J.D. Mechanical properties of mother of pearl in tension. Proc. R. Soc. B 1977, 196, 443–463. [Google Scholar]
- Tushtev, K.; Murck, M.; Grathwohl, G. On the nature of the stiffness of nacre. Mater. Sci. Eng. C 2008, 28, 1164–1172. [Google Scholar] [CrossRef]
- Meyers, M.A.; Lin, A.Y.M.; Chen, P.Y.; Muyco, J. Mechanical strength of abalone nacre: Role of the soft organic layer. J. Mech. Behav. Biomed. 2008, 1, 76–85. [Google Scholar] [CrossRef]
- Reddy, M.M.; Hoch, A.R. Calcite crystal growth rate inhibition by polycarboxylic acids. J. Colloid Interface Sci. 2001, 235, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Wada, N.; Kanamura, K.; Umegaki, T. Effects of carboxylic acids on the crystallization of calcium carbonate. J. Colloid Interface Sci. 2001, 233, 65–72. [Google Scholar] [CrossRef]
- Aschauer, U.; Spagnoli, D.; Bowen, P.; Parker, S.C. Growth modification of seeded calcite using carboxylic acids: Atomistic simulations. J. Colloid Interface Sci. 2010, 346, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Chaussemier, M.; Pourmohtasham, E.; Gelus, D.; Pécoul, N.; Perrot, H.; Lédion, J.; Cheap-Charpentier, H.; Horner, O. State of art of natural inhibitors of calcium carbonate scaling. A review article. Desalination 2015, 356, 47–55. [Google Scholar] [CrossRef]
- Karar, A.; Naamoune, F.; Kahoul, A. Chemical and electrochemical study of the inhibition of calcium carbonate precipitation using citric acid and sodium citrate. Desalin. Water Treat. 2016, 57, 16300–16309. [Google Scholar] [CrossRef]
- Manoli, F.; Dalas, E. Calcium carbonate crystallization in the presence of glutamic acid. J. Cryst. Growth 2001, 222, 293–297. [Google Scholar] [CrossRef]
- Hoch, A.R.; Reddy, M.M.; Aiken, G.R. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim. Cosmochim. Acta 2000, 64, 61–72. [Google Scholar] [CrossRef]
- Westin, K.J.; Rasmuson, Å.C. Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid. J. Colloid Interface Sci. 2005, 282, 359–369. [Google Scholar] [CrossRef]
- Lee, Y.J.; Reeder, R.J. The role of citrate and phthalate during Co (II) coprecipitation with calcite. Geochim. Cosmochim. Acta 2006, 70, 2253–2263. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, Y.; Chang, B.; Lee, Y.J. Enhanced Arsenic (III and V) Removal in Anoxic Environments by Hierarchically Structured Citrate/FeCO3 Nanocomposites. Nanomaterials 2020, 10, 1773. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, 1102–1109. Available online: https://pubchem.ncbi.nlm.nih.gov/compound (accessed on 2 September 2020). [CrossRef] [Green Version]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN—A new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (version 2.18)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water Resour. Investig. Rep. 2011, 99-4259. Available online: https://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/html/final.html (accessed on 27 September 2020). [CrossRef] [Green Version]
- Patil, N.B.; Dweltz, N.E.; Radhakrishnan, T. X-Ray measurements of crystallinity and crystallite size in swollen and hydrolyzed cottons. Text. Res. J. 1962, 32, 460–471. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, C.H.; Hur, H.; Seo, J.; Lee, Y.J. Characterization of Synthesized Strontianite: Effects of Ionic Strength, Temperature, and Aging Time on Crystal Morphology and Size. J. Miner. Soc. Korea 2015, 28, 195–207. [Google Scholar] [CrossRef]
- Cao, M.; Wu, X.; He, X.; Hu, C. Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures. Langmuir 2005, 21, 6093–6096. [Google Scholar] [CrossRef]
- Dickens, B.; Bowen, J.S. Refinement of the crystal structure of the aragonite phase of CaCO3. J. Res. Natl. Bur. Stand. Phys. Chem. A 1971, 75, 27–32. [Google Scholar] [CrossRef]
- Pokroy, B.; Zolotoyabko, E. Aragonite growth on single-crystal substrates displaying a threefold axis. Chem. Commun. 2005, 16, 2140–2142. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Yamashita, K.; Umegaki, T. Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions. J. Colloid Interface Sci. 1999, 212, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, H.; Konishi, H.; Roden, E.E. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. Am. Mineral. 2010, 95, 1650–1656. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, H. A new approach to quantify the ordering state of protodolomite using XRD, TEM, and Z-contrast imaging. J. Sediment. Res. 2019, 89, 537–551. [Google Scholar] [CrossRef]
- Feng, J.; Lee, Y.J.; Kubicki, J.D.; Reeder, R.J.; Phillips, B.L. NMR spectroscopy of citrate in solids: Cross-polarization kinetics in weakly coupled systems. Magn. Reson. Chem. 2008, 46, 408–417. [Google Scholar] [CrossRef]
- Tadier, S.; Rokidi, S.; Rey, C.; Combes, C.; Koutsoukos, P.G. Crystal growth of aragonite in the presence of phosphate. J. Cryst. Growth 2017, 458, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, D.; Mahapatra, S. Aragonite crystals with unconventional morphologies. J. Mater. Chem. 1999, 9, 2953–2957. [Google Scholar] [CrossRef]
- Loftus, E.; Rogers, K.; Lee-Thorp, J. A simple method to establish calcite: Aragonite ratios in archaeological mollusc shells. J. Quat. Sci. 2015, 30, 731–735. [Google Scholar] [CrossRef]
- Al Omari, M.M.H.; Rashid, I.S.; Qinna, N.A.; Jaber, A.M.; Badwan, A.A. Calcium carbonate. In Profiles of drug substances, excipients and related methodology. Acad. Press 2016, 41, 31–132. [Google Scholar]
- Phillips, B.L.; Lee, Y.J.; Reeder, R.J. Organic coprecipitates with calcite: NMR spectroscopic evidence. Environ. Sci. Technol. 2005, 39, 4533–4539. [Google Scholar] [CrossRef] [PubMed]
- Balmain, J.; Hannoyer, B.; Lopez, E. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analyses of mineral and organic matrix during heating of mother of pearl (nacre) from the shell of the mollusc Pinctada maxima. J. Biomed. Mater. Res. 1999, 48, 749–754. [Google Scholar] [CrossRef]
- Siva, T.; Muralidharan, S.; Sathiyanarayanan, S.; Manikandan, E.; Jayachandran, M. Enhanced polymer induced precipitation of polymorphous in calcium carbonate: Calcite aragonite vaterite phases. J. Inorg. Organomet. Polym. Mater. 2017, 27, 770–778. [Google Scholar] [CrossRef]
- Tobler, D.J.; Rodriguez-Blanco, J.D.; Dideriksen, K.; Bovet, N.; Sand, K.K.; Stipp, S.L. Citrate effects on amorphous calcium carbonate (ACC) structure, stability, and crystallization. Adv. Funct. Mater. 2015, 25, 3081–3090. [Google Scholar] [CrossRef]
- Geffroy, C.; Foissy, A.; Persello, J.; Cabane, B. Surface complexation of calcite by carboxylates in water. J. Colloid Interface Sci. 1999, 211, 45–53. [Google Scholar] [CrossRef] [PubMed]
Organic Acids | Molecular Formula and Weight (g/mol) | Number of Carboxyl Groups (COOH) | Acid Dissociation Constants | Structural Formula | ||
---|---|---|---|---|---|---|
pK1 | pK2 | pK3 | ||||
citric acid (Case 1) | C6H8O7 (192.12) | 3 | 3.13 | 4.76 | 6.40 | |
malic acid (Case 1 and 2) | C4H6O5 (134.09) | 2 | 3.40 | 5.20 | ||
acetic acid (Case 1) | C2H4O2 (60.05) | 1 | 4.76 | |||
glutamic acid (Case 2) | C5H9NO4 (147.13) | 2 | 2.10 | 4.07 | 9.47 | |
phthalic acid (Case 2) | C8H6O4 (166.14) | 2 | 2.89 | 5.51 |
Sample Type of Aragonite | Structural Parameters a (Å) | Crystallite size b (nm) | Rwp c | Rexp d | GOF e | ||
---|---|---|---|---|---|---|---|
a-axis | b-axis | c-axis | |||||
arag seed (2-h) | 4.9630(9) | 7.969(17) | 5.747(11) | 79.3 ± 1.3 | 7.17 | 6.22 | 1.15 |
control | 4.9629(7) | 7.966(12) | 5.7470(9) | 136.4 ± 3.1 | 8.16 | 6.93 | 1.18 |
citric-arag | 4.960(29) | 7.978(58) | 5.749(36) | 27.4 ± 0.5 | 7.11 | 5.68 | 1.25 |
malic-arag | 4.962(14) | 7.969(25) | 5.749(16) | 54.3 ± 0.7 | 8.14 | 6.37 | 1.28 |
acetic-arag | 4.9625(7) | 7.966(13) | 5.747(00) | 127.1 ± 2.8 | 7.81 | 6.63 | 1.18 |
glutamic-arag | 4.9627(8) | 7.966(14) | 5.746(10) | 100.7 ± 1.7 | 7.87 | 6.85 | 1.15 |
phthalic-arag | 4.9624(8) | 7.966(15) | 5.746(10) | 111.3 ± 2.3 | 7.85 | 6.65 | 1.18 |
Concentration of a Carboxylic Acid in Synthetic Solution (mM) | The Incorporated Contents of Carboxylic Acids in Aragonite Samples (wt %) | |||||
---|---|---|---|---|---|---|
Control | Citric- Arag | Malic- Arag | Acetic- Arag | Glutamic- Arag | Phthalic- Arag | |
0.1 | - | 0.23 | 0.04 | 0.01↓ | 0.01↓ | 0.01↓ |
0.5 | - | 0.53 | 0.19 | 0.01↓ | 0.01↓ | 0.01↓ |
1.0 | 0.01↓ | 0.65 | 0.19 | 0.01↓ | 0.01↓ | 0.01↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Jo, U.; Chang, B.; Lee, Y.J. Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals 2020, 10, 960. https://doi.org/10.3390/cryst10110960
Lee SY, Jo U, Chang B, Lee YJ. Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals. 2020; 10(11):960. https://doi.org/10.3390/cryst10110960
Chicago/Turabian StyleLee, Seon Yong, Uijin Jo, Bongsu Chang, and Young Jae Lee. 2020. "Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite" Crystals 10, no. 11: 960. https://doi.org/10.3390/cryst10110960
APA StyleLee, S. Y., Jo, U., Chang, B., & Lee, Y. J. (2020). Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals, 10(11), 960. https://doi.org/10.3390/cryst10110960