1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. P–I–V Curves
3.2. Small-Signal Modulation Responses
3.3. Eye Diagrams
3.4. Relative Intensity Noise Spectra
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lenstra, D.; Van Schaijk, T.T.M.; Williams, K.A. Toward a feedback-insensitive semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1502113. [Google Scholar]
- Kobayashi, W.; Ito, T.; Yamanaka, T.; Fujisawa, T.; Shibata, Y.; Kurosaki, T.; Kohtoku, M.; Tadokoro, T.; Sanjoh, H. 50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1500908. [Google Scholar] [CrossRef]
- Matsui, T.; Pham, T.; Sudo, T.; Carey, G.; Young, B.; Xu, J.; Cole, C.; Roxlo, C. 28-G baud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB Laser. Lightwave Technol. 2016, 34, 2677. [Google Scholar]
- Petermann, K. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electon. 1995, 1, 480. [Google Scholar]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; McInerney, J.G.; Kettler, T.; Laemmlin, M.; Bimberg, D.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers. Electron. Lett. 2003, 39, 1819. [Google Scholar]
- Huang, H.; Arsenijević, D.; Schires, K.; Sadeev, T.; Bimberg, D.; Grillot, F. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states. AIP Adv. 2016, 6, 125114. [Google Scholar]
- Zubov, F.; Maximov, M.; Moiseev, E.; Savelyev, A.; Shernyakov, Y.; Livshits, D.; Kryzhanovskaya, N.; Zhukov, A. Observation of zero linewidth enhancement factor at excited state band in quantum dot laser. Electron. Lett. 2015, 51, 1686. [Google Scholar] [CrossRef]
- Mizutani, K.; Yashiki, K.; Kurihara, M.; Suzuki, Y.; Hagihara, Y.; Hatori, N.; Shimizu, T.; Urino, Y.; Nakamura, T.; Kurata, K.; et al. Isolator free optical I/O core transmitter by using quantum dot laser. In Proceedings of the IEEE 12th International Conference on Group IV Photonics, Vancouver, BC, Canada, 26–28 August 2015; Volume 3, p. 177. [Google Scholar]
- Deppe, D.G.; Shavritranuruk, K.; Ozgur, G.; Chen, H.; Freisem, S. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 2009, 45, 54. [Google Scholar] [CrossRef]
- Dieter, B.; Udo, W.P. Quantum dots: Promises and accomplishments. Mater. Today 2011, 14, 388. [Google Scholar]
- Lv, Z.R.; Ji, H.M.; Yang, X.G.; Luo, S.; Gao, F.; Xu, F.; Yang, T. Large signal modulation characteristics in the transition regime for two-state lasing quantum dot lasers. Chin. Phys. Lett. 2016, 33, 124204. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939. [Google Scholar] [CrossRef]
- Asryan, L.V.; Suris, R.A. Upper limit for the modulation bandwidth of a quantum dot laser. Appl. Phys. Lett. 2010, 96, 221112. [Google Scholar] [CrossRef] [Green Version]
- Carroll, O.; Hegarty, S.P.; Huyet, G.; Corbett, B. Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers. Electron. Lett. 2005, 41, 911. [Google Scholar] [CrossRef]
- Park, K.H.; Lee, J.K.; Han, J.H.; Cho, H.S.; Jang, D.H.; Park, C.S.; Pyun, K.E. The effects of external optical feedback on the power penalty of DFB-LD modules for 2.5 Gb s−1 optical transmission systems. Opt. Quant. Electron. 1998, 30, 23. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Lv, Z.R.; Yang, X.G.; Chai, H.Y.; Meng, L.; Yang, T. 25 Gb/s directly modulated ground-state operation of 1.3 μm InAs/GaAs quantum dot lasers up to 75 °C. Chin. Opt. Lett. 2020, 18, 071401. [Google Scholar] [CrossRef]
- Badcock, T.J.; Liu, H.Y.; Groom, K.M.; Jin, C.Y.; Gutiérrez, M.; Hopkinson, M.; Mowbray, D.J.; Skolnick, M.S. 1.3 µm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electron. Lett. 2006, 42, 922. [Google Scholar] [CrossRef]
- Ji, H.M.; Yang, T.; Cao, Y.L.; Ma, W.Q.; Cao, Q.; Chen, L.H. Theoretical analysis of modal gain in p-doped 1.3 μm InAs/GaAs quantum dot lasers. Phys. Status Solidi C 2009, 6, 948. [Google Scholar] [CrossRef]
- Deppe, D.G.; Huang, H.; Shchekin, O.B. Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed. IEEE J. Quantum Electron. 2002, 38, 1587. [Google Scholar] [CrossRef]
- Inoue, D.; Jung, D.; Norman, J.; Wan, Y.; Nishiyama, N.; Arai, S.; Gossard, A.C.; Bowers, J.S. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 2018, 26, 7022–7033. [Google Scholar] [CrossRef]
- Henry, C.H.; Olsson, N.A.; Dutta, N.K. Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers. IEEE J. Quantum Electron. 1985, 21, 1152–1156. [Google Scholar] [CrossRef]
- Helms, J.; Petermann, K. A simple analytic expression for the stable operation of laser diodes with optical feedback. IEEE J. Quantum Electron. 1990, 26, 833–836. [Google Scholar] [CrossRef]
- Huang, H.; Duan, J.; Dong, B.; Norman, J.; Jung, D.; Bowers, J.E.; Grillot, F. Epitaxial quantum dot lasers on silicon with high thermal stability and strong resistance to optical feedback. APL Photon. 2020, 5, 016103. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
MaXueer, X.-Y.; He, Y.-M.; Lv, Z.-R.; Zhang, Z.-K.; Chai, H.-Y.; Lu, D.; Yang, X.-G.; Yang, T. 1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals 2020, 10, 980. https://doi.org/10.3390/cryst10110980
MaXueer X-Y, He Y-M, Lv Z-R, Zhang Z-K, Chai H-Y, Lu D, Yang X-G, Yang T. 1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals. 2020; 10(11):980. https://doi.org/10.3390/cryst10110980
Chicago/Turabian StyleMaXueer, Xia-Yida, Yi-Ming He, Zun-Ren Lv, Zhong-Kai Zhang, Hong-Yu Chai, Dan Lu, Xiao-Guang Yang, and Tao Yang. 2020. "1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance" Crystals 10, no. 11: 980. https://doi.org/10.3390/cryst10110980
APA StyleMaXueer, X. -Y., He, Y. -M., Lv, Z. -R., Zhang, Z. -K., Chai, H. -Y., Lu, D., Yang, X. -G., & Yang, T. (2020). 1.3 μm p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. Crystals, 10(11), 980. https://doi.org/10.3390/cryst10110980