Sonic and Photonic Crystals
Funding
Conflicts of Interest
References
- Ren, L.; Li, Y.; Li, N.; Chen, C. Trapping and Optomechanical Sensing of Particles with a Nanobeam Photonic Crystal Cavity. Crystals 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Azizpour, M.R.J.; Soroosh, M.; Dalvand, N.; Seifi-Kavian, Y. All-Optical Ultra-Fast Graphene-Photonic Crystal Switch. Crystals 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Francis, H.; Chen, S.; Che, K.-J.; Hopkinson, M.; Jin, C.-Y. Photonic Crystal Cavity-Based Intensity Modulation for Integrated Optical Frequency Comb Generation. Crystals 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Jao, R.-F.; Lin, M.-C. Quantitative Analysis of Photon Density of States for One-Dimensional Photonic Crystals in a Rectangular Waveguide. Crystals 2019, 9, 576. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.-Y.; Lai, Y.-C.; Cheng, Y.-C. Spatial Beam Filtering with Autocloned Photonic Crystals. Crystals 2019, 9, 585. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.-N.; Chung, Y.-C.; Chiu, H.-T.; Hsu, J.-C.; Lin, Y.-F.; Kuo, C.-T.; Chang, Y.-W.; Chen, C.-Y.; Lin, T.-R. Dual Photonic–Phononic Crystal Slot Nanobeam with Gradient Cavity for Liquid Sensing. Crystals 2020, 10, 421. [Google Scholar] [CrossRef]
- Luan, P.-G. Bubbly Water as a Natural Metamaterial of Negative Bulk-Modulus. Crystals 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.-P.; Tien, T.Q.; Tong, Q.C.; Lai, N.D. An Optimization of Two-Dimensional Photonic Crystals at Low Refractive Index Material. Crystals 2019, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guo, Y.; Wang, Y.; Zhang, H. Band Tunability of Coupled Elastic Waves along Thickness in Laminated Anisotropic Piezoelectric Phononic Crystals. Crystals 2019, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-Y.; Chen, C.-D.; Yeh, J.-Y.; Chen, L.-W. Elastic Wave Propagation of Two-Dimensional Metamaterials Composed of Auxetic Star-Shaped Honeycomb Structures. Crystals 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.-F.; Fang, X.; Zhang, Z.-Q.; Huang, Z.; Chuang, K.-C. Highly Localized and Efficient Energy Harvesting in a Phononic Crystal Beam: Defect Placement and Experimental Validation. Crystals 2019, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, T.; Jiang, X.; Liu, Z.; Ruan, Y.; Deng, Y. A Numerical Method for Flexural Vibration Band Gaps in a Phononic Crystal Beam with Locally Resonant Oscillators. Crystals 2019, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Zhang, S.; Gao, Y. A Magnetic-Dependent Vibration Energy Harvester Based on the Tunable Point Defect in 2D Magneto-Elastic Phononic Crystals. Crystals 2019, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.T.T.; Lai, N.D. Deterministic Insertion of KTP Nanoparticles into Polymeric Structures for Efficient Second-Harmonic Generation. Crystals 2019, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-Y. Flexible Photonic Nanojet Formed by Cylindrical Graded-Index Lens. Crystals 2019, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Han, D.; Xi, L.; Zhang, Z.; Zhang, X.; Li, H.; Zhang, X. Two-Layer Erbium-Doped Air-Core Circular Photonic Crystal Fiber Amplifier for Orbital Angular Momentum Mode Division Multiplexing System. Crystals 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, H.; Zhang, X.; Li, H.; Xi, L. Analysis of the Transmission Characteristic and Stress-Induced Birefringence of Hollow-Core Circular Photonic Crystal Fiber. Crystals 2019, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Luo, W.; Li, K.; Copner, N.; Lin, S.-B. Design of Polarization Splitter via Liquid and Ti Infiltrated Photonic Crystal Fiber. Crystals 2019, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tsuji, Y.; Eguchi, M.; Chen, C.-P. Polarization Converter Based on Square Lattice Photonic Crystal Fiber with Double-Hole Units. Crystals 2019, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Wang, L.; Dou, S.; Zhao, J.; Xu, H.; Zhang, L.; Li, X. Recent Advances in Colloidal Photonic Crystal-Based Anti-Counterfeiting Materials. Crystals 2019, 9, 417. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-W.; Yeh, J.-Y. Sonic and Photonic Crystals. Crystals 2020, 10, 994. https://doi.org/10.3390/cryst10110994
Chen L-W, Yeh J-Y. Sonic and Photonic Crystals. Crystals. 2020; 10(11):994. https://doi.org/10.3390/cryst10110994
Chicago/Turabian StyleChen, Lien-Wen, and Jia-Yi Yeh. 2020. "Sonic and Photonic Crystals" Crystals 10, no. 11: 994. https://doi.org/10.3390/cryst10110994
APA StyleChen, L. -W., & Yeh, J. -Y. (2020). Sonic and Photonic Crystals. Crystals, 10(11), 994. https://doi.org/10.3390/cryst10110994