Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pankove, J.I.; Miller, E.A.; Berkeyheiser, J.E. GaN blue light-emitting diodes. J. Lumin. 1972, 5, 84–86. [Google Scholar] [CrossRef]
- Lee, H.E.; Choi, J.; Lee, S.H.; Jeong, M.; Shin, J.H.; Joe, D.J.; Kim, D.H.; Kim, C.W.; Park, J.H.; Lee, J.H.; et al. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator. Adv. Mater. 2018, 30, 1800649. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Senoh, M.; Nagahama, S.I.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiroyuki, K.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 1998, 72, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.; Zhong, H.; Chung, R.B.; Feezell, D.F.; Saito, M.; Fujito, K.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Semipolar (1011) InGaN/GaN laser diodes on bulk GaN substrates. Jpn. J. Appl. Phys. 2007, 46, L444. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Zhang, A.P.; Dang, G.; Cao, X.A.; Lee, K.P.; Cho, H.; Gila, B.P.; Johnson, J.W.; Monier, C.; et al. GaN electronics for high power, high temperature applications. Mater. Sci. Eng. B Adv. 2001, 82, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Bu, Q.; Cai, Y.; Sun, R.; Liu, W.; Wen, H.; Lam, S.; Liang, Y.C.; Mitrovic, I.Z.; Taylor, S.; et al. Monolithic integration design of GaN-based power chip including gate driver for high-temperature DC–DC converters. Jpn. J. Appl. Phys. 2019, 58, 056505. [Google Scholar] [CrossRef]
- Ren, B.; Liao, M.; Sumiya, M.; Huang, J.; Wang, L.; Koide, Y.; Sang, L. Vertical-Type Ni/GaN UV Photodetectors Fabricated on Free-Standing GaN Substrates. Appl. Sci. 2019, 9, 2895. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wu, Y.; Zhang, L.; Huo, Q.; Hu, H.; Ma, F.; Yang, M.; Shi, D.; Shao, Y.; Hao, X. Growth of high-quality GaN crystals on a BCN nanosheet-coated substrate by hydride vapor phase epitaxy. CrystEngComm 2019, 21, 1302–1308. [Google Scholar] [CrossRef]
- Andre, Y.; Trassoudaine, A.; Tourret, J.; Cadoret, R.; Gil, E.; Castelluci, D.; Aoude, O.; Disseix, P. Low dislocation density high-quality thick hydride vapour phase epitaxy (HVPE) GaN layers. J. Cryst. Growth 2007, 306, 86–93. [Google Scholar] [CrossRef]
- Li, T.; Ren, G.; Su, X.; Yao, J.; Yan, Z.; Gao, X.; Xu, K. Growth behavior of ammonothermal GaN crystals grown on non-polar and semi-polar HVPE GaN seeds. CrystEngComm 2019, 21, 4774–4879. [Google Scholar] [CrossRef]
- Inoue, T.; Seki, Y.; Oda, O.; Kurai, S.; Yamada, Y.; Taguchi, T. Pressure–Controlled Solution Growth of Bulk GaN Crystals under High Pressure. Phys. Status Solidi B 2001, 223, 15–27. [Google Scholar] [CrossRef]
- Mori, Y.; Imanishi, M.; Murakami, K.; Yoshimura, M. Recent progress of Na-flux method for GaN crystal growth. Jpn. J. Appl. Phys. 2019, 58, SC0803. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Shao, Y.; Yu, J.; Wu, Y.; Hao, X.; Yin, Z.; Dai, Y.; Tian, Y.; Huo, Q.; et al. Improving the quality of GaN crystals by using graphene or hexagonal boron nitride nanosheets substrate. ACS Appl. Mater. Inter. 2015, 7, 4504–4510. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, C.; Tyagi, P.; Singh, S.; Singh, P.; Gupta, G.; Maurya, K.K.; Srivatsa, K.M.K.S.; Kumar, M.S.; Kushvaha, S.S. Influence of growth temperature on structural and optical properties of laser MBE grown epitaxial thin GaN films on a-plane sapphire. J. Vac. Sci. Technol. B 2018, 36, 04G102. [Google Scholar] [CrossRef]
- Ubukata, A.; Sodabanlu, H.; Watanabe, K.; Koseki, S.; Yano, Y.; Tabuchi, T.; Takeyoshi, S.; Koh, M.; Yoshiaki, N.; Masakazu, S. Accelerated GaAs growth through MOVPE for low-cost PV applications. J. Cryst. Growth 2018, 489, 63–67. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Yang, Z.; Wu, J.; Yu, T. Stress control and dislocation reduction in the initial growth of GaN on Si (111) substrates by using a thin GaN transition layer. CrystEngComm 2019, 21, 4792–4797. [Google Scholar] [CrossRef]
- Huang, H.H.; Chao, C.L.; Chi, T.W.; Chang, Y.L.; Liu, P.C.; Tu, L.W.; Tsay, J.D.; Kuo, H.C.; Cheng, S.J.; Lee, W.I. Strain-reduced GaN thick-film grown by hydride vapor phase epitaxy utilizing dot air-bridged structure. J. Cryst. Growth 2009, 311, 3029–3032. [Google Scholar] [CrossRef]
- Moram, M.A.; Kappers, M.J.; Barber, Z.H.; Humphreys, C.J. Growth of low dislocation density GaN using transition metal nitride masking layers. J. Cryst. Growth 2007, 298, 268–271. [Google Scholar] [CrossRef]
- Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 1986, 48, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Robinson, I.K.; Myoung, J.; Shim, K.; Yoo, M.C.; Kim, K. Critical thickness of GaN thin films on sapphire (0001). Appl. Phys. Lett. 1996, 69, 2358–2360. [Google Scholar] [CrossRef]
- Lahrèche, H.; Nataf, G.; Feltin, E.; Beaumont, B.; Gibart, P. Growth of GaN on (1 1 1) Si: A route towards self-supported GaN. J. Cryst. Growth 2001, 231, 329–334. [Google Scholar] [CrossRef]
- Chu, C.F.; Lai, F.I.; Chu, J.T.; Yu, C.C.; Lin, C.F.; Kuo, H.C.; Wang, S.C. Study of GaN light-emitting diodes fabricated by laser lift-off technique. J. Appl. Phys. 2004, 95, 3916–3922. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.E.; Choi, H.; Kim, Y.; We, J.H.; Shin, J.S.; Lee, K.J.; Cho, B.J. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 2016, 10, 10851–10857. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Oh, J.E.; Kang, T.W. Preparation of large area free-standing GaN substrates by HVPE using mechanical polishing liftoff method. Mater. Lett. 2001, 47, 276–280. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Z.; Lu, P.; Liu, Y. Molecular dynamics simulations of atomic assembly in the process of GaN film growth. Physica B 2009, 404, 4211–4215. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, Y.; Wu, Y.; Shao, Y.; Tian, Y.; Huo, Q.; Hao, X.; Shen, Y.; Hua, Z. Epitaxial growth of a self-separated GaN crystal by using a novel high temperature annealing porous template. CrystEngComm 2014, 16, 9063–9068. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, Y.; Zhang, L.; Hao, X.; Wu, Y.; Liu, X.; Dai, Y.; Tian, Y. Growth of high quality GaN on a novel designed bonding-thinned template by HVPE. CrystEngComm 2012, 14, 4777–4780. [Google Scholar] [CrossRef]
- Hu, H.; Chang, B.; Sun, X.; Huo, Q.; Zhang, B.; Li, Y.; Shao, Y.; Zhang, L.; Wu, Y.Z.; Hao, X. Intrinsic properties of macroscopically tuned gallium nitride single crystalline facets for electrocatalytic hydrogen evolution. Chem. Eur. J. 2019, 25, 10420–10426. [Google Scholar] [CrossRef]
- Li, H.D.; Zhang, S.L.; Yang, H.B.; Zou, G.T.; Yang, Y.Y.; Yue, K.T.; Wu, X.H.; Yan, Y. Raman spectroscopy of nanocrystalline GaN synthesized by arc plasma. J. Appl. Phys. 2002, 91, 4562–4567. [Google Scholar] [CrossRef]
- Pandian, M.S.; In, U.C.; Ramasamy, P.; Manyum, P.; Lenin, M.; Balamurugan, N. Unidirectional growth of sulphamic acid single crystal and its quality analysis using etching, microhardness, HRXRD, UV–visible and Thermogravimetric-Differential thermal characterizations. J. Cryst. Growth 2010, 312, 397–401. [Google Scholar] [CrossRef]
- Tian, Y.; Shao, Y.; Wu, Y.; Hao, X.; Zhang, L.; Dai, Y.; Huo, Q. Direct growth of freestanding GaN on C-face SiC by HVPE. Sci. Rep. 2015, 5, 10748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reshchikov, M.A.; Morkoç, H.; Park, S.S.; Lee, K.Y. Yellow and green luminescence in a freestanding GaN template. Appl. Phys. Lett. 2001, 78, 3041–3043. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, B.; Liu, L.; Xu, D.; Shao, Y.; Wu, Y.; Hao, X. Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process. Crystals 2020, 10, 141. https://doi.org/10.3390/cryst10020141
Hu H, Zhang B, Liu L, Xu D, Shao Y, Wu Y, Hao X. Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process. Crystals. 2020; 10(2):141. https://doi.org/10.3390/cryst10020141
Chicago/Turabian StyleHu, Haixiao, Baoguo Zhang, Lei Liu, Deqin Xu, Yongliang Shao, Yongzhong Wu, and Xiaopeng Hao. 2020. "Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process" Crystals 10, no. 2: 141. https://doi.org/10.3390/cryst10020141
APA StyleHu, H., Zhang, B., Liu, L., Xu, D., Shao, Y., Wu, Y., & Hao, X. (2020). Growth of Freestanding Gallium Nitride (GaN) Through Polyporous Interlayer Formed Directly During Successive Hydride Vapor Phase Epitaxy (HVPE) Process. Crystals, 10(2), 141. https://doi.org/10.3390/cryst10020141