High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Crystal Growth
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Loncar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018, 26, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhar, L.; Curtis, K.; Fäcke, T. Holographic data storage: Coming of age. Nat. Photonics 2008, 2, 403–405. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, S.X.; He, D.H.; Hu, Y.; Chen, H.X.; Liang, W.G.; Yu, J.H.; Guan, H.Y.; Luo, Y.H.; Zhang, J.; et al. Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes. Opt. Lett. 2016, 41, 4739–4742. [Google Scholar] [CrossRef] [PubMed]
- Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 040603. [Google Scholar] [CrossRef]
- Jiang, H.W.; Luo, R.; Liang, H.X.; Chen, X.F.; Chen, Y.P.; Lin, Q. Fast response of photorefraction in lithium niobate microresonators. Opt. Lett. 2017, 42, 3267–3270. [Google Scholar] [CrossRef]
- Tu, D.; Xu, C.N.; Yoshida, A.; Fujihala, M.; Hirotsu, J.; Zheng, X.G. LiNbO3:Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 2017, 29, 1606914. [Google Scholar] [CrossRef]
- Gopalan, K.K.; Janner, D.; Nanot, S.; Parret, R.; Lundeberg, M.B.; Koppens, F.H.L.; Pruneri, V. Mid-infrared pyroresistive graphene detector on LiNbO3. Adv. Opt. Mater. 2017, 5, 1600723. [Google Scholar] [CrossRef] [Green Version]
- Ballman, A.A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique. J. Am. Ceram. Sot. 1965, 48, 112–113. [Google Scholar] [CrossRef]
- Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Unferdorben, M.; Dravecz, G.; Hajdara, I.; Szaller, Z. Growth, defect structure, and THz application of stoichiometric lithium niobate. Appl. Phys. Rev. 2015, 2, 040601. [Google Scholar] [CrossRef] [Green Version]
- Hesselink, L.; Orlov, S.S.; Liu, A.; Akella, A.; Lande, D.; Neurgaonkar, R.R. Photorefractive materials for nonvolatile volume holographic data storage. Science 1998, 282, 1089–1094. [Google Scholar] [CrossRef]
- Schmidt, W.G.; Albrecht, M.; Wippermann, S.; Blankenburg, S.; Rauls, E.; Fuchs, F.; Rödl, C.; Furthmüller, J.; Hermann, A. LiNbO3 ground- and excited-state properties from first-principles calculations. Phys. Rev. B 2008, 77, 035106. [Google Scholar] [CrossRef]
- Bernert, C.; Hoppe, R.; Wittwer, F.; Woike, T.; Schroer, C.G. Ptychographic analysis of the photorefractive effect in LiNbO3:Fe. Opt. Express 2017, 25, 31640–31650. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Buse, K.; Psaltis, D. Photorefractive recording in LiNbO3:Mn. Opt. Lett. 2002, 27, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.Y.; Liu, L.R.; Liu, D.A.; Zu, J.F.; Luan, Z. Optimal switching from recording to fixing for high diffraction from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram. Opt. Lett. 2004, 29, 186–188. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Dai, P.; Shen, L.; Bao, N. The growth and characterization of six inch lithium niobate crystal with high homogeneity. Cryst. Eng. Comm. 2020. [Google Scholar] [CrossRef]
- Byer, R.L.; Young, J.F.; Feigelson, R.S. Growth of high-quality LiNbO3 crystals from the congruent melt. J. Appl. Phys. 1970, 41, 2320–2325. [Google Scholar] [CrossRef]
- O’BRYAN, H.M.; Gallagher, P.K.; Brandle, C.D. Congruent composition and Li-rich phase boundary of LiNbO3. J. Am. Ceram. Soc. 1985, 68, 493–496. [Google Scholar] [CrossRef]
- Ashkin, A.; Boyd, G.D.; Dziedzic, J.M.; Smith, R.G.; Ballman, A.A.; Levinstein, J.J.; Nassau, K. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 1966, 9, 72–74. [Google Scholar] [CrossRef]
- Zhong, G.G.; Jian, J.; Wu, Z. Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO. J. Opt. Soc. Am. 1980, 70, 631. [Google Scholar]
- Liu, J.J.; Zhang, W.L.; Zhang, G.Y. Defect chemistry analysis of the defect structure in Mg-doped LiNbO3 crystals. Phys. Stat. Sol(A). 1996, 156, 285–291. [Google Scholar] [CrossRef]
- Yao, L.F.; Li, J.L.; Liu, J.H.J. The study of growth on magnesium doped lithium niobate crystals. J. Changchun Inst. Opt. Fine Mech. 1994, 17, 65–68. [Google Scholar]
- Kim, I.W.; Park, B.C.; Jin, B.M.; Bhalla, A.S.; Kim, J.W. Characteristics of MgO-doped LiNbO3 crystals. Mater. Lett. 1995, 24, 157–160. [Google Scholar] [CrossRef]
- Bae, S.I.; Ichikawa, J.; Shimamura, K.; Onodera, H.; Fukuda, T. Doping effects of Mg and/or Fe ions on congruent LiNbO3 single crystal growth. J. Cryst. Growth. 1997, 180, 94–100. [Google Scholar] [CrossRef]
- Chen, Y.L.; Guo, J.; Lou, C.B.; Yuan, J.W.; Zhang, W.L.; Chen, S.L.; Zhang, G.Y. Crystal growth and characteristics of 6.5 mol% MgO-doped LiNbO3. J. Cryst. Growth. 2004, 263, 427–430. [Google Scholar] [CrossRef]
- Palatnikov, M.N.; Birukova, I.V.; Masloboeva, S.M.; Makarova, O.V.; Manukovskaya, D.V.; Sidorov, N.V. The search of homogeneity of LiNbO3 crystals grown of charge with different genesis. J. Cryst. Growth. 2014, 386, 113–118. [Google Scholar] [CrossRef]
- Yoshimura, M.; Sakata, S.I.; Iba, H.; Kawano, T.; Hoshikawa, K. Vertical Bridgman growth of Al2O3/YAG: Ce melt growth composite. J. Cryst. Growth. 2015, 416, 100–105. [Google Scholar] [CrossRef]
- Shi-Ji, F.; Guan-Shun, S.; Wen, W.; Jin-Long, L.; Xiu-hang, L. Bridgman growth of Li2B4O7 crystals. J. Cryst. Growth. 1990, 99, 811–814. [Google Scholar] [CrossRef]
- Nishimura, E.; Okano, K.; Iida, J.; Hoshikawa, K. LiTaO3 Single Crystal Growth by the Vertical Bridgman Technique. Crystl. Res. Technol. 2018, 53, 1800044. [Google Scholar] [CrossRef]
- Liu, W.B.; Tian, T.; Yang, B.B.; Xu, J.Y.; Liu, H.D. Bridgman growth and luminescence properties of dysprosium doped lead potassium niobate crystal. J. Cryst. Growth. 2017, 468, 462–464. [Google Scholar] [CrossRef]
- Jin, M.; Lin, S.; Li, W.; Chen, Z.; Li, R.; Wang, X.; Pei, Y. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chem. Mater. 2019, 31, 2603–2610. [Google Scholar] [CrossRef]
- Jin, M.; Shen, H.; Fan, S.J.; He, Q.B.; Xu, J.Y. Industrial growth and characterization of Si-doped GaAs crystal by a novel multi-crucible Bridgman method. Cryst. Res. Technol. 2017, 52, 1700052. [Google Scholar] [CrossRef]
- Chen, H.; Xia, H.; Wang, J.; Zhang, J.; Xu, J.; Fan, S. Growth of LiNbO3 crystals by the Bridgman method. J. Cryst. Growth. 2003, 256, 219–222. [Google Scholar] [CrossRef]
- Xu, X.; Liang, X.; Li, M.; Solanki, S.; Chong, T.C. Two-color nonvolatile holographic recording in Bridgman-grown Ru: LiNbO3 crystals. J. Cryst. Growth. 2008, 310, 1976–1980. [Google Scholar] [CrossRef]
- Iyi, N.; Kitamura, K.; Yajima, Y.; Kimura, S.; Furukawa, Y.; Sato, M. Defect structure model of MgO-doped LiNbO3. J. Solid. State. Chem. 1995, 118, 148–152. [Google Scholar] [CrossRef]
- Niwa, K.; Furukawa, Y.; Takekawa, S.; Kitamura, K. Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material. J. Cryst. Growth. 2000, 208, 493–500. [Google Scholar] [CrossRef]
- Furukawa, Y.; Sato, M.; Nitanda, F.; Ito, K. Growth and characterization of MgO-doped LiNbO3 for electro-optic devices. J. Cryst. Growth. 1990, 99, 832–836. [Google Scholar] [CrossRef]
- Bryan, D.A.; Gerson, R.; Tomaschke, H.E. Increased optical damage resistance in lithium niobate. Appl. Phy. Lett. 1984, 44, 847–849. [Google Scholar] [CrossRef]
- Bhatt, R.; Bhaumik, I.; Ganesamoorthy, S.; Bright, R.; Soharab, M.; Karnal, A.K.; Gupta, P.K. Control of intrinsic defects in lithium niobate single crystal for optoelectronic applications. Crystals. 2017, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.H.; Hu, X.B.; Wang, J.Y.; Liu, H.; Chen, X.F. Growth and characterization of near stoichiometric LiNbO3 single crystal. Cryst. Res. Technol. 2007, 42, 114–118. [Google Scholar] [CrossRef]
- Smith, R.G.; Fraser, D.B.; Denton, R.T.; Rich, T.C. Correlation of reduction in optically induced refractive index inhomogeneity with OH content in LiTaO3 and LiNbO3. J. Appl. Phys. 1968, 39, 4600–4602. [Google Scholar] [CrossRef]
- Herrington, J.R.; Dischler, B.; Räuber, A.; Schneider, J. An optical study of the stretching absorption band near 3 microns from OH− defects in LiNbO3. Solid State Commun. 1973, 12, 351–354. [Google Scholar] [CrossRef]
- Kong, Y.F.; Deng, J.C.; Zhang, W.L.; Wen, J.K.; Zhang, G.Y.; Wang, H.F. OH− absorption spectra in doped lithium niobate crystals. Phys. Lett. A 1994, 196, 128–132. [Google Scholar] [CrossRef]
- Kokanyan, E.P.; Razzari, L.; Cristiani, I.; Degiorgio, V.; Gruber, J.B. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals. Appl. Phys. Lett. 2004, 4, 1880–1882. [Google Scholar] [CrossRef]
- Földvári, I.; Polgár, K.; Voszka, R.; Balasanyan, R.N. A simple method to determine the real composition of LiNbO3 crystals. Cryst. Res. Technol. 1984, 19, 1659–1661. [Google Scholar] [CrossRef]
- Li, X.; Kong, Y.; Liu, H.; Sun, L.; Xu, J.; Chen, S.; Zhang, G. Origin of the generally defined absorption edge of non-stoichiometric lithium niobate crystals. Solid State Commun. 2007, 141, 113–116. [Google Scholar] [CrossRef]
- Kityk, I.V.; Makowska-Janusik, M.; Fontana, M.D.; Aillerie, M.; Abdi, F. Nonstoichiometric defects and optical properties in LiNbO3. J. Phys. Chem. B. 2001, 105, 12242–12248. [Google Scholar] [CrossRef]
- Ferriol, M.; Dakki, A.; Cohen-Adad, M.T.; Foulon, G.; Boulon, G. Growth and characterization of mgo-doped single-crystal fibers of lithium niobate in relation to high temperature phase equilibria in the ternary system Li2O-Nb2O5-MgO. J. Cryst. Growth. 1997, 178, 529–538. [Google Scholar] [CrossRef]
Samples | Extraordinary Refractive Index (ne) | |||||
---|---|---|---|---|---|---|
Position 1 | Position 2 | Position 3 | Position 4 | Position 5 | Average | |
Bottom of LN:Mg5 | 2.1919 | 2.1917 | 2.1917 | 2.1918 | 2.1917 | 2.19176 |
Top of LN:Mg5 | 2.1916 | 2.1917 | 2.1918 | 2.1917 | 2.1915 | 2.19166 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Tian, T.; Wang, M.; Shen, H.; Zhou, D.; Zhang, Y.; Xu, J. High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method. Crystals 2020, 10, 71. https://doi.org/10.3390/cryst10020071
Yan X, Tian T, Wang M, Shen H, Zhou D, Zhang Y, Xu J. High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method. Crystals. 2020; 10(2):71. https://doi.org/10.3390/cryst10020071
Chicago/Turabian StyleYan, Xiaodong, Tian Tian, Menghui Wang, Hui Shen, Ding Zhou, Yan Zhang, and Jiayue Xu. 2020. "High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method" Crystals 10, no. 2: 71. https://doi.org/10.3390/cryst10020071
APA StyleYan, X., Tian, T., Wang, M., Shen, H., Zhou, D., Zhang, Y., & Xu, J. (2020). High Homogeneity of Magnesium Doped LiNbO3 Crystals Grown by Bridgman Method. Crystals, 10(2), 71. https://doi.org/10.3390/cryst10020071