Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Appearance of Quasi-Liquid Layer on Ice in the Absence/Presence of HNO3 Gas
3.2. Disappearance of Quasi-Liquid Layers on Ice in the Absence/Presence of HNO3 Gas
3.3. Measurement of Contact Angle for Quasi-Liquid Layer on Ice in the Presence of HNO3 Gas
3.4. Size Change of Quasi-Liquid Layer in Response to Temperature Change in the Presence of HNO3 Gas
3.5. Disappearance Mechanism of Quasi-Liquid Layer on Ice in the Presence of HNO3 Gas
3.6. Comparison between Quasi-Liquid Layer in Our Experiments and Quasi-Liquid Layer in Nature
4. Conclusions
- Irrespective of the presence/absence of the HNO3 gas, the pure-QLLs and HNO3-QLLs appeared with increasing T and disappeared with decreasing T. The appearance temperatures of the HNO3-QLLs upon heating under the low- and high-PHNO3 conditions were not so different, however, the disappearance temperature of the HNO3-QLLs upon cooling under high-PHNO3 conditions was significantly lower than that observed under low-PHNO3 conditions.
- From the changes in the volume of the HNO3-QLLs following changes in temperature, and also from the liquid–solid phase diagram of the HNO3–H2O binary system, we found that, in the presence of HNO3 gas, the HNO3-QLLs on the ice basal faces were aqueous HNO3 solutions, whose temperature and HNO3 concentration coincided with those along the liquidus line.
- From the disappearance temperatures of the HNO3-QLLs on the ice basal faces, we estimated PHNO3 under low- and high-PHNO3 conditions to be ~10−4 and 10−3–10−2 Pa, respectively. These two values were smaller than the maximum PHNO3 estimated from the equilibrium aqueous HNO3 solutions vapor pressures of 5 × 10−4 and 6 Pa, respectively.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bartels-Rausch, T. Chemistry: Ten things we need to know about ice and snow. Nature 2013, 494, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Grannas, A.M.; Jones, A.E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H.J.; Bergin, M.; Bottenheim, J.; Boxe, C.S.; Carver, G.; et al. An overview of snow photochemistry: Evidence, mechanisms and impacts. Atmos. Chem. Phys. Discuss. 2007, 7, 4165–4283. [Google Scholar] [CrossRef] [Green Version]
- Domine, F.; Bock, J.; Voisin, D.; Donaldson, D.J. Can We Model Snow Photochemistry? Problems with the Current Approaches. J. Phys. Chem. A 2013, 117, 4733–4749. [Google Scholar] [CrossRef] [PubMed]
- Bartels-Rausch, T.; Jacobi, H.-W.; Kahan, T.F.; Thomas, J.L.; Thomson, E.S.; Abbatt, J.P.D.; Ammann, M.; Blackford, J.R.; Bluhm, H.; Boxe, C.; et al. A review of air–ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow. Atmos. Chem. Phys. 2014, 14, 1587–1633. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Dominé, F.; Shepson, P.B. Air-snow interactions and atmospheric chemistry. Science 2002, 297, 1506–1510. [Google Scholar] [CrossRef] [Green Version]
- Huthwelker, T.; Ammann, M.; Peter, T. The uptake of acidic gases on ice. Chem. Rev. 2006, 106, 1375–1444. [Google Scholar] [CrossRef]
- Elbaum, M.; Lipson, S.G.; Dash, J.G. Optical study of surface melting on ice. J. Cryst. Growth 1993, 129, 491–505. [Google Scholar] [CrossRef]
- Petrenko, V.F.; Whitworth, R.W. Physics of Ice; Oxford University Press: Oxford, UK, 1999; ISBN 9780198518945. [Google Scholar]
- Li, Y.; Somorjai, G.A. Surface Premelting of Ice. J. Phys. Chem. C 2007, 111, 9631–9637. [Google Scholar] [CrossRef]
- Gelman Constantin, J.; Gianetti, M.M.; Longinotti, M.P.; Corti, H.R. The quasi-liquid layer of ice revisited: The role of temperature gradients and tip chemistry in AFM studies. Atmos. Chem. Phys. Discuss. 2018, 18, 14965–14978. [Google Scholar] [CrossRef] [Green Version]
- Boxe, C.S.; Saiz-Lopez, A. Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): Implications for NOx release from the Arctic and coastal Antarctic snowpack. Atmos. Chem. Phys. 2008, 8, 4855–4864. [Google Scholar] [CrossRef] [Green Version]
- Marcotte, G.; Marchand, P.; Pronovost, S.; Ayotte, P.; Laffon, C.; Parent, P. Surface-Enhanced Nitrate Photolysis on Ice. J. Phys. Chem. A 2015, 119, 1996–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazaki, G.; Matsui, T.; Tsukamoto, K.; Usami, N.; Ujihara, T.; Fujiwara, K.; Nakajima, K. In situ observation of elementary growth steps on the surface of protein crystals by laser confocal microscopy. J. Cryst. Growth 2004, 262, 536–542. [Google Scholar] [CrossRef]
- Komatsu, H.; Sazaki, G. Differential interference contrast microscopy/phase-contrast microscopy. In Compendium of Surface and Interface Analysis; The Surface Science Society of Japan, Ed.; Springer: Singapore, 2018; pp. 55–60. ISBN 978-981-10-6155-4. [Google Scholar]
- Sazaki, G.; Zepeda, S.; Nakatsubo, S.; Yokoyama, E.; Furukawa, Y. Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl. Acad. Sci. 2010, 107, 19702–19707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazaki, G.; Asakawa, H.; Nagashima, K.; Nakatsubo, S.; Furukawa, Y. Double Spiral Steps on Ih Ice Crystal Surfaces Grown from Water Vapor Just below the Melting Point. Cryst. Growth Des. 2014, 14, 2133–2137. [Google Scholar] [CrossRef]
- Asakawa, H.; Sazaki, G.; Yokoyama, E.; Nagashima, K.; Nakatsubo, S.; Furukawa, Y. Roles of Surface/Volume Diffusion in the Growth Kinetics of Elementary Spiral Steps on Ice Basal Faces Grown from Water Vapor. Cryst. Growth Des. 2014, 14, 3210–3220. [Google Scholar] [CrossRef]
- Inomata, M.; Murata, K.; Asakawa, H.; Nagashima, K.; Nakatsubo, S.; Furukawa, Y.; Sazaki, G. Temperature Dependence of the Growth Kinetics of Elementary Spiral Steps on Ice Basal Faces Grown from Water Vapor. Cryst. Growth Des. 2018, 18, 786–793. [Google Scholar] [CrossRef]
- Sazaki, G.; Zepeda, S.; Nakatsubo, S.; Yokomine, M.; Furukawa, Y. Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl. Acad. Sci. USA 2012, 109, 1052–1055. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, H.; Sazaki, G.; Nagashima, K.; Nakatsubo, S.; Furukawa, Y. Two types of quasi-liquid layers on ice crystals are formed kinetically. Proc. Natl. Acad. Sci. 2016, 113, 1749–1753. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Asakawa, H.; Nagashima, K.; Furukawa, Y.; Sazaki, G. Thermodynamic origin of surface melting on ice crystals. Proc. Natl. Acad. Sci. 2016, 113, E6741–E6748. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Asakawa, H.; Nagashima, K.; Furukawa, Y.; Sazaki, G. In situ Determination of Surface Tension-to-Shear Viscosity Ratio for Quasiliquid Layers on Ice Crystal Surfaces. Phys. Rev. Lett. 2015, 115, 256103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, Y.; Hama, T.; Backus, E.H.G.; Mezger, M.; Bonn, D.; Bonn, M.; Sazaki, G. The Surface of Ice under Equilibrium and Nonequilibrium Conditions. Acc. Chem. Res. 2019, 52, 1006–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaecker-Voirol, A.; Ponche, J.L.; Mirabel, P. Vapor pressures in the ternary system water-nitric acid-sulfuric acid at low temperatures. J. Geophys. Res. 1990, 95, 11857. [Google Scholar] [CrossRef]
- Goldan, P.D.; Kuster, W.C.; Albritton, D.L.; Fehsenfeld, F.C.; Connell, P.S.; Norton, R.B.; Huebert, B.J. Calibration and tests of the filter-collection method for measuring clean-air, ambient levels of nitric acid. Atmos. Environ. 1983, 17, 1355–1364. [Google Scholar] [CrossRef]
- Hanke, M.; Umann, B.; Uecker, J.; Arnold, F.; Bunz, H. Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass spectrometry during the MINATROC field campaign 2000 on Monte Cimone. Atmos. Chem. Phys. 2003, 3, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Michelson, A.A.; Morley, E.W. On the relative motion of the Earth and the luminiferous ether. Am. J. Sci. 1887, s3–34, 333–345. [Google Scholar] [CrossRef]
- Beyer, K.D.; Hansen, A.R. Phase diagram of the nitric acid/water system: Implications for polar stratospheric clouds. J. Phys. Chem. A 2002, 106, 10275–10284. [Google Scholar] [CrossRef]
- Yokoyama, E.; Yoshizaki, I.; Shimaoka, T.; Sone, T.; Kiyota, T.; Furukawa, Y. Measurements of Growth Rates of an Ice Crystal from Supercooled Heavy Water under Microgravity Conditions: Basal Face Growth Rate and Tip Velocity of a Dendrite. J. Phys. Chem. B 2011, 115, 8739–8745. [Google Scholar] [CrossRef]
- Thibert, E.; Dominé, F. Thermodynamics and Kinetics of the Solid Solution of HNO3 in Ice. J. Phys. Chem. B 1998, 102, 4432–4439. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Nagashima, K.; Sazaki, G.; Hama, T.; Asakawa, H.; Murata, K.; Furukawa, Y. Direct Visualization of Quasi-Liquid Layers on Ice Crystal Surfaces Induced by Hydrogen Chloride Gas. Cryst. Growth Des. 2016, 16, 2225–2230. [Google Scholar] [CrossRef]
- Nagashima, K.; Sazaki, G.; Hama, T.; Murata, K.; Furukawa, Y. Uptake Mechanism of Atmospheric Hydrogen Chloride Gas in Ice Crystals via Hydrochloric Acid Droplets. Cryst. Growth Des. 2018, 18, 4117–4122. [Google Scholar] [CrossRef]
Experimental Conditions | |||
---|---|---|---|
Pure | Low PHNO3 | High PHNO3 | |
HNO3 concentration in a bubbling solution | - | 0.1 mol/L | 6.8 mol/L |
Maximum PHNO3 | 0 | 6×10−4 Pa | 5 Pa |
Estimated PHNO3 | 0 | ~10−4 Pa | 10−3–10−2 Pa |
Appearance temperature of QLLs (mean ± standard deviation) | −2.5 to −1.4 °C (−1.9 ± 0.4 °C) | −0.9 to −0.2 °C (−0.5 ± 0.3 °C) | −2.5 to −1.5 °C (−1.8 ± 0.4 °C) |
Disappearance temperature of QLLs (mean ± standard deviation) | −2.5 to −1.8 °C (−2.2 ± 0.2 °C) | −1.3 to −0.6 °C (−0.9 ± 0.3 °C) | −8.0 to −6.0 °C (−6.4 ± 0.8 °C) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagashima, K.; Maurais, J.; Murata, K.-i.; Furukawa, Y.; Ayotte, P.; Sazaki, G. Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas. Crystals 2020, 10, 72. https://doi.org/10.3390/cryst10020072
Nagashima K, Maurais J, Murata K-i, Furukawa Y, Ayotte P, Sazaki G. Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas. Crystals. 2020; 10(2):72. https://doi.org/10.3390/cryst10020072
Chicago/Turabian StyleNagashima, Ken, Josée Maurais, Ken-ichiro Murata, Yoshinori Furukawa, Patrick Ayotte, and Gen Sazaki. 2020. "Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas" Crystals 10, no. 2: 72. https://doi.org/10.3390/cryst10020072
APA StyleNagashima, K., Maurais, J., Murata, K. -i., Furukawa, Y., Ayotte, P., & Sazaki, G. (2020). Appearance and Disappearance of Quasi-Liquid Layers on Ice Crystals in the Presence of Nitric Acid Gas. Crystals, 10(2), 72. https://doi.org/10.3390/cryst10020072