A Novel Halogen Bond Acceptor: 1-(4-Pyridyl)-4-Thiopyridine (PTP) Zwitterion
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquard, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the Halogen Bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Forni, A.; Franchini, D.; Dapiaggi, F.; Pieraccini, S.; Sironi, M.; Scilabra, P.; Pilati, T.; Petko, K.; Resnati, G.; Yagupolkii, Y.L. Featuring I…N Halogen Bond and Weaker Interactions in Iodoperfluoroalkylimidazoles: An Experimental and Theoretical Charge Density Study. Cryst. Growth Des. 2019, 19, 1621–1631. [Google Scholar] [CrossRef] [Green Version]
- Awwadi, F.F.; Willett, R.D.; Peterson, K.A.; Twamley, B. The Nature of Halogen⋯Halides Synthons: Theoretical and Crystallographic Studies. J. Phys. Chem. A 2007, 111, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Awwadi, F.F.; Taher, D.; Haddad, S.F.; Turnbull, M.M. Competition between Hydrogen and Halogen Bonding Interactions: Theoretical and Crystallographic Studies. Cryst. Growth Des. 2014, 14, 1961–1971. [Google Scholar] [CrossRef]
- Stilinovi ć, V.; Horvat, G.; Hrenar, T.; Nemec, V.; Cinčić, D. Halogen and Hydrogen Bonding between (N-Halogeno-)-succinimides and Pyridine Derivatives in Solution, the Solid State and In Silico. Chem. Eur. J. 2017, 23, 5244–5257. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen Bonding: An Electrostatcially-Driven Highly Directional Noncovalent Interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resntai, G. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances. Acc. Chem. Res. 2013, 46, 2686–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, T. Halogen bonds and σ-holes. Faraday Discuss. 2017, 203, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.K.; Ho, P.S. Relationships between Hydrogen Bonds and Halogen Bonds in Biological Systems. Acta Cryst. 2017, B73, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Gunawardana, C.A.; Desper, J.; Sinha, A.S.; Đaković, M.; Aakeröy, C.B. Competition and Selectivity in Supramolecular Synthesis: Structural Landscape around 1-(Pyridylmethyl)-2,2′-biimidazoles. Faraday Discuss. 2017, 203, 371–388. [Google Scholar] [CrossRef]
- Pfrunder, M.C.; Brock, A.J.; Brown, J.J.; Grosjean, A.; Ward, J.; McMurtrie, J.C.; Clegg, J.J. A Three-dimensional Cubic Halogen-bonded Network. Chem. Commun. 2018, 54, 3874–3976. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Tuikka, M.J.; Hirva, P.; Kukushkin, V.Y.; Novikov, A.S.; Haukka, M. Fine-tuning Halogen Bonding Properties of Diiodine through Halogen-halogen Charge Transfer-Extended [Ru(2,2′-bipyridine)(CO)2X2]•I2 Systems (X=Cl, Br, I). CrystEngComm 2016, 18, 1987–1995. [Google Scholar] [CrossRef]
- Pfrunder, M.C.; Micallef, A.S.; Rintoul, L.; Arnold, D.P.; McMurtrie, J. Interplay between the Supramolecular Motifs of Polypyridyl Metal Complexes and Halogen Bond Networks in Cocrystals. Cryst. Growth Des. 2016, 16, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.-C.; Yeung, Y.-Y. Halogen Bond Catalyzed Bromocarbocyclization. Angew. Chem. Int. Ed. 2018, 57, 3483–3487. [Google Scholar] [CrossRef]
- Carreras, L.; Serrano-Torné, M.; van Leeuwen, P.W.N.M.; Vidal-Ferran, A. XBpos-Rh: A Halogen-bond Assembled Supramolecular Catalyst. Chem. Sci. 2018, 9, 3644–3648. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.Y.C.; Marques, I.; Félix, V.; Beer, P.D. Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. J. Am. Chem. Soc. 2017, 139, 12228–12239. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Riel, A.M.S.; Decato, D.A.; Sun, J.; Massena, C.J.; Jessop, M.J.; Berryman, O.B. The Intramolecular Hydrogen Bonded-halogen Bond: A New Strategy for Preorganization and Enhanced Binding. Chem. Sci. 2018, 9, 5828–5836. [Google Scholar] [CrossRef] [Green Version]
- Dichiarante, V.; Kaiho, T.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G.; Ursini, M. The Diiodomethyl-sulfonyl Moiety: An Unexplored Halogen Bond-donor Motif. Chem. Commun. 2019, 55, 4234–4237. [Google Scholar] [CrossRef]
- Carletta, A.; Zbačnik, M.; Vitković, M.; Tumanov, N.; Stilinović, V.; Wouters, J.; Cinčić, D. Halogen-bonded Cocrystals of N-salicylidene Schiff Bases and Iodoperfluorinated Benzenes: Hydroxyl Oxgen as A Halogen Bond Acceptor. CrystEngComm 2018, 20, 5332–5339. [Google Scholar] [CrossRef]
- Zbačnik, M.; Vitković, M.; Vulić, V.; Nogalo, I.; Cinčić, D. Competiton between Halogen Bonds in Cocrystals of Imines Derived from o-Vanillin. Cryst. Growth Des. 2016, 16, 6381–6389. [Google Scholar] [CrossRef]
- Carletta, A.; Zbačnik, M.; Gysel, M.V.; Vitković, M.; Tumanov, N.; Stilinović, V.; Wouters, J.; Cinčić, D. Playing with Isomerism: Cocrystallization of Isomeric N-Salicylideneaminopyridines with Perfluorinated Compounds as Halogen Bond Donors and Its Impact on Photochromism. Cryst. Growth Des. 2018, 18, 6833–6842. [Google Scholar] [CrossRef]
- Koskinen, L.; Jääskeläiinen, S.; Hirva, P.; Haukka, M. Tunnable Interaction Strength and Nature of the S⋯Br Halogen Bonds in [(Thione)Br2] Systems. Cryst. Growth Des. 2015, 15, 1160–1167. [Google Scholar] [CrossRef]
- Koskinen, L.; Hirva, P.; Hasu, A.; Jääskeläinen, S.; Koivistoinen, J.; Petterson, M.; Haukka, M. Modification of the Supramolecular Structure of [(Thione)IY] (Y=Cl, Br) Systems by Cooperation of Strong Halogen Bonds and Hydrogen Bonds. CrystEngComm 2015, 17, 2718–2727. [Google Scholar] [CrossRef]
- Eccles, K.S.; Morrison, R.E.; Sinha, A.S.; Maguire, A.R.; Lawrence, S.E. Investigating C=S⋯I Halogen Bonding for Cocrystallization with Primary Thionamides. Cryst. Growth Des. 2015, 15, 3442–3451. [Google Scholar] [CrossRef]
- Le Gal, Y.; Lorcy, D.; Jeannin, O.; Barrière, F.; Dorcet, V.; Lieffrig, J.; Fourmigué, M. C=S⋯I Halogen Bonding Interactions in Crystalline Iodinated Dithiole-2-thiones and Thiazole-2-thiones. CrystEngComm 2016, 8, 5474–5481. [Google Scholar] [CrossRef]
- Cauliez, P.; Polo, V.; Roisnel, T.; Llusar, R.; Fourmigué, M. The Thiocyanate anion as a polydentate halogen bond acceptor. CrystEngComm 2010, 12, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Cinčić, D.; Friščić, T.; Joens, W. Experimental and Database Studies of Three-centered Halogen Bonds with Bifurcated Acceptors Present in Molecular Crystals, Cocrystals and Salts. CrystEngComm 2011, 13, 3224–3231. [Google Scholar] [CrossRef]
- Goud, N.R.; Bolton, O.; Burgess, E.C.; Matzger, A.J. Unprecedented Size of the σ-Holes on 1,3,5-Triiodo-2,4,6-trinitrobenzene Begets Unprecedented Intermolecular Interactions. Cryst. Growth Des. 2016, 16, 1765–1771. [Google Scholar] [CrossRef]
- Pigge, F.C.; Kapadia, P.P.; Swenson, D.C. Halogen Bonded Networks from Pryidyl-substituted Tetraarylethylenes and Diiodotetrafluorobenzenes. CrystEngComm 2013, 15, 4386–4391. [Google Scholar] [CrossRef]
- Ravat, P.; Lekshmi, S.S.; Biswas, S.N.; Nandy, P.; Varughese, S. Equivalence of Ethylene and Azo-Bridges in the Modular Design of Molecular Complexes: Role of Weak Interactions. Cryst. Growth Des. 2015, 15, 2389–2401. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Spartz, C.L.; Dembowski, S.; Dwyre, S.; Desper, J. A Systematic Structural Study of Halogen Bonding versus Hydrogen Bonding within Competitive Supramolecular Systems. IUCrJ 2015, 2, 498–510. [Google Scholar]
- Bosch, E.; Kruse, S.J.; Groeneman, R.H. Infinite and Discrete Halogen Bonded Assemblies Based upon 1, 2-Bis(iodoethynyl)benzene. CrystEngComm 2019, 21, 990–993. [Google Scholar] [CrossRef]
- Peterson, A.; Kaasik, M.; Metsala, A.; Järving, I.; Adamson, J.; Kanger, T. Tunable chiral triazole-based halogen bond donors: Assessment of donor strength in solution with nitrogen-containing acceptors. RSC Adv. 2019, 9, 11718–11721. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Chen, B.; Fredrickson, D.C.; DiSalvo, F.J.; Lobkovsky, E.; Adams, J. Crystal Structures of (Pyrene)10(I3-)4(I2)10 and [1, 3, 6, 8-Tetrakis(methylthio)pyrene]3(I3-)3(I2)7: Structural Trends in Fused Aromatic Polyiodides. Chem. Mater. 2003, 15, 1420–1433. [Google Scholar] [CrossRef]
- Tamilselvi, A.; Mugesh, G. Interaction of Heterocyclic thiols/thiones eliminated from cephalosporins with iodine and its biological implications. Bioorg. Med. Chem. Lett. 2010, 20, 3692–3697. [Google Scholar] [CrossRef]
- Mancini, A.; Pala, L.; Aragoni, M.C.; Arca, M.; Devillanova, F.A.; Hursthouse, M.B.; Light, M.E.; Skabara, P.J.; Bricklebank, N. Structural and DFT Studies of Dibromine and Diiodine Adducts of a Sulfur-Rich Thiocarbonyl Donor. Eur. J. Inorg. Chem. 2012, 2373–2380. [Google Scholar] [CrossRef]
- Eichstaedt, K.; Wasilewska, A.; Wicher, B.; Gdaniec, M.; Połoński, T. Supramolecular Synthesis Based on a Combination of Se⋯N Secondary Bonding Interactions with Hydrogen and Halogen Bonds. Cryst. Growth Des. 2016, 16, 1282–1293. [Google Scholar] [CrossRef]
- Montis, R.; Arca, M.; Aragoni, M.C.; Bauzá, A.; Demartin, F.; Frontera, A.; Isaia, F.; Lippolis, V. Hydrogen- and Halogen-bond Cooperativity in Determining the Crystal Packing of Dihalogen Charge-transfer Adducts: A Study Case from Heterocyclic Pentatomic Chalcogenone Donors. CrystEngComm 2017, 19, 4401–4412. [Google Scholar] [CrossRef] [Green Version]
- Ivolgina, V.A.; Chernov’yants, M.S.; Popov, L.D.; Suslonov, V.V.; Borodkin, G.S.; Luanguzov, N.V.; Avtushenko, N.A. Perspective Anti-thyroid Druy 2-thioxo-5-(3, 4, 5-trimethoxybenzylidene) thiazolidine-4-one: X-ray and Thermogravimetric Characterization of Two Novel Molecular Adducts, Obtained by Interaction with I2. J. Mol. Struct. 2019, 1180, 629–635. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Van der Lubbe, S.C.C.; Guerra, C.F. The Nature of Hydrogen Bonds: A Delineation of the Role of Different Energy Components on Hydrogen Bond Strengths and Lengths. Chem. Asian J. 2019, 14, 2760–2769. [Google Scholar] [PubMed] [Green Version]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Lommerse, P.M.; Stone, A.J.; Taylor, R.; Allen, F.H. The Nature and Geometry of Intermolecular Interactions Between Halogen and Oxygen or Nitrogen. J. Am. Chem. Soc. 1996, 118, 3108–3116. [Google Scholar] [CrossRef]
- Brammer, L.; Bruton, E.A.; Sherwood, P. Understanding the Behavior of Halogens as Hydrogen Bond Acceptors. Cryst. Growth Des. 2001, 1, 277–290. [Google Scholar] [CrossRef]
- Zordan, F.; Brammer, L.; Sherwood, P. Supramolecular Chemistry of Halogens: Complementary Features of Inorganic (M-X) and Organic (C-X′) halogens Applied to M-X⋯X′-C Halogen Bond Formation. J. Am. Chem. Soc. 2005, 127, 5979–5989. [Google Scholar] [CrossRef]
- Johnson, M.T.; Džolić, Z.; Cetina, M.; Wendt, O.F.; Öhrström, L.; Rissanen, K. Neutral Organometallic Halogen Bond Acceptors: Halogen Bonding in Complexes of PCPPdX (X=Cl, Br, I) with Iodine (I2), 1,4-Diiodotetrafluorobenzene (F4DIBz), and 1,4-Diiodooctafluorobutane (F8DIBu). Cryst. Growth Des. 2012, 12, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Tuikka, M.; Rissanen, K.; Haukka, M. Extended Assemblies of Ru(bpy)(CO)2X2 (X=Cl, Br, I) Molecules Linked by 1,4-Diiodotetrafluoro-Benzene (DITFB) Halogen Bond Donors. Crystals 2019, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Riel, A.M.S.; Jessop, M.J.; Decato, D.A.; Massena, C.J.; Nascimento, V.R.; Berryman, O.B. Experimental Investigation of Halogen-bond Hard-soft Acid-base Complementarity. Acta Cryst. 2017, B73, 203–209. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Yang, P.; Qin, C.; Du, S.; Jia, L.; Qin, Y.; Gong, J.; Wu, S. Crystal Structure, Stability and Desolvation of the Solvates of Sorafenib Tosylate. Crystals 2019, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, M.A. CrystalExplorer Model Energies and Ergy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-shell Systems. ICUrJ 2017, 4, 547–587. [Google Scholar]
1 | 2 | 3 | |
---|---|---|---|
Formula moiety | (C10H8N2S), 0.5(C6H4I2) | 2(C10H8N2S), 3(C6F4I2), (CH2Cl2) | (C10H8N2S), 2(C6F5I) |
Empirical formula | C13H10IN2S | C39H18Cl2F12I6N4S2 | C22H8F10I2N2S |
Molecular weight | 353.19 | 1666.99 | 776.16 |
Crystal system | Triclinic | Triclinic | Monoclinic |
Space group | P-1 | P-1 | P21/c |
a, Å | 7.0677(3) | 11.1401(3) | 22.6204(3) |
b, Å | 8.6967(4) | 15.9270(4) | 8.53950(10) |
c, Å | 11.1576(5) | 16.2566(4) | 13.00460(10) |
α, ° | 100.990(4) | 63.216(3) | 90 |
β,° | 100.380(4) | 76.370(2) | 103.5430(10) |
γ, ° | 104.057(4) | 71.299(2) | 90 |
Volume, Å | 634.33(5) | 2424.76(13) | 2442.21(5) |
Z | 2 | 2 | 4 |
Density, g/cm3 | 1.849 | 2.283 | 2.111 |
T, K | 120(2) | 120(2) | 123(2) |
μ (Kα) (mm-1) | 21.185 | 32.729 | 21.895 |
No. relns. | 6446 | 58,192 | 16,460 |
θ Range (°) | 4.155-76.751 | 3.063-76.976 | 4.02-76.948 |
Unique reflns. | 2649 | 10,175 | 5149 |
GOOF (F2) | 1.056 | 1.048 | 1.040 |
Rint | 0.0345 | 0.0488 | 0.0387 |
R1(I ≥ 2σ) | 0.0274 | 0.0311 | 0.0262 |
wR2 (I ≥ 2σ) | 0.0744 | 0.0827 | 0.0629 |
Crystals | Tc /°C |
---|---|
1 | 127.67 |
2 | 114.46 |
3 | 85.36 |
Crystal * | I⋯A | d (I⋯A) Å | <C-I⋯A ° | Symmetry Operations | RXB |
---|---|---|---|---|---|
1 | I⋯N | 2.968(3) | 177.01(9) | x, y, z | 0.839 |
2 | I1⋯N2 | 2.845(6) | 171.4(2) | x, y, z | 0.806 |
I2⋯N4 | 2.915(6) | 176.7(2) | x, y, z | 0.826 | |
I3⋯S1 | 3.096(1) | 174.6(1) | 1−x, 1−y, 2−z | 0.819 | |
I6⋯S1 | 3.215(1) | 171.8(1) | 1+x, y, z | 0.851 | |
I4⋯S2 | 3.137(1) | 172.6(1) | −1+x, y, −1+z | 0.830 | |
I5⋯S2 | 3.300(1) | 171.7(1) | −x, 1−y, 1−z | 0.873 | |
3 | I1⋯S1 | 3.1224(8) | 175.47(7) | 2−x, 2−y, 1−z | 0.826 |
I2⋯S1 | 3.1122(8) | 176.9(1) | 1−x, −1/2+y, 1/2−z | 0.823 |
Cocrystal | XB | Contribution/% |
---|---|---|
1 | N⋯I | 2.1 |
2 | N⋯I | 3.2 |
2 | S⋯I | 3.4 |
3 | S⋯I | 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Tuikka, M.; Haukka, M. A Novel Halogen Bond Acceptor: 1-(4-Pyridyl)-4-Thiopyridine (PTP) Zwitterion. Crystals 2020, 10, 165. https://doi.org/10.3390/cryst10030165
Ding X, Tuikka M, Haukka M. A Novel Halogen Bond Acceptor: 1-(4-Pyridyl)-4-Thiopyridine (PTP) Zwitterion. Crystals. 2020; 10(3):165. https://doi.org/10.3390/cryst10030165
Chicago/Turabian StyleDing, Xin, Matti Tuikka, and Matti Haukka. 2020. "A Novel Halogen Bond Acceptor: 1-(4-Pyridyl)-4-Thiopyridine (PTP) Zwitterion" Crystals 10, no. 3: 165. https://doi.org/10.3390/cryst10030165
APA StyleDing, X., Tuikka, M., & Haukka, M. (2020). A Novel Halogen Bond Acceptor: 1-(4-Pyridyl)-4-Thiopyridine (PTP) Zwitterion. Crystals, 10(3), 165. https://doi.org/10.3390/cryst10030165