Seeded Mineralization in Silk Fibroin Hydrogel Matrices Leads to Continuous Rhombohedral CaCO3 Films
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Regenerated Silk Fibroin (SF) Solutions
2.3. Substrates Coating
2.4. Deposition of Seed Layers
2.5. Deposition of SF Hydrogel Layers on Seed Layers
2.6. Growth of Overlayers
2.7. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiner, S.; Sagi, I.; Addadi, L. Choosing the crystallization path less traveled. Science 2005, 309, 1027–1028. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Arribart, H.; Guille, M.M.G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Cuif, J.-P.; Dauphin, Y.; Doucet, J.; Salome, M.; Susini, J. XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim. Cosmochim. Acta 2003, 67, 75–83. [Google Scholar] [CrossRef]
- Cuif, J.P.; Dauphin, Y. The Environment Recording Unit in coral skeletons—A synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2005, 2, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Levi-Kalisman, Y.; Falini, G.; Addadi, L.; Weiner, S. Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM. J. Struct. Biol. 2001, 135, 8–17. [Google Scholar] [CrossRef]
- Nudelman, F.; Gotliv, B.A.; Addadi, L.; Weiner, S. Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 2006, 153, 176–187. [Google Scholar] [CrossRef]
- Nudelman, F.; Chen, H.H.; Goldberg, H.A.; Weiner, S.; Addadi, L. Spiers Memorial Lecture Lessons from biomineralization: Comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Faraday Discuss. 2007, 136, 9–25. [Google Scholar] [CrossRef]
- Murayama, E.; Takagi, Y.; Ohira, T.; Davis, J.G.; Greene, M.I.; Nagasawa, H. Fish otolith contains a unique structural protein, otolin-1. Eur. J. Biochem. 2002, 269, 688–696. [Google Scholar] [CrossRef]
- Moradian-Oldak, J. Amelogenins: Assembly, processing and control of crystal morphology. Matrix Biol. 2001, 20, 293–305. [Google Scholar] [CrossRef]
- Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes. Chem. Eur. J. 2006, 12, 981–987. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Weinkamer, R.; Fratzl, P. Solving conflicting functional requirements by hierarchical structuring-Examples from biological materials. MRS Bull. 2016, 41, 667–671. [Google Scholar] [CrossRef]
- Sudo, S.; Fujikawa, T.; Nagakura, T.; Ohkubo, T.; Sakaguchi, K.; Tanaka, M.; Nakashima, K.; Takahashi, T. Structures of mollusc shell framework proteins. Nature 1997, 387, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Asenath-Smith, E.; Li, H.; Keene, E.C.; Seh, Z.W.; Estroff, L.A. Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. Adv. Funct. Mater. 2012, 22, 2891–2914. [Google Scholar] [CrossRef]
- Putnis, A.; Prieto, M.; Fernandez-Diaz, L. Fluid supersaturation and crystallization in porous media. Geol. Mag. 1995, 132, 1–13. [Google Scholar] [CrossRef]
- Grassman, O.; Neder, R.B.; Putnis, A.; Löbmann, P. Biomimetic control of crystal assembly by growth in an organic hydrogel network. Am. Mineral. 2003, 88, 647–652. [Google Scholar] [CrossRef]
- Grassmann, O.; Löbmann, P. Morphogenetic Control of Calcite Crystal Growth in Sulfonic Acid Based Hydrogels. Chem. Eur. J. 2003, 9, 1310–1316. [Google Scholar] [CrossRef]
- Oaki, Y.; Imai, H. Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media. Cryst. Growth Des. 2003, 3, 711–716. [Google Scholar] [CrossRef]
- Oaki, Y.; Hayashi, S.; Imai, H. A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: Inheritance of crystal habit from nanoscale. Chem. Commun. 2007, 27, 2841–2843. [Google Scholar] [CrossRef]
- Nindiyasari, F.; Fernández-Díaz, L.; Griesshaber, E.; Astilleros, J.M.; Sánchez-Pastor, N.; Schmahl, W.W. Influence of Gelatin Hydrogel Porosity on the Crystallization of CaCO3. Cryst. Growth Des. 2014, 14, 1531–1542. [Google Scholar] [CrossRef]
- Li, H.; Estroff, L.A. Calcite Growth in Hydrogels: Assessing the Mechanism of Polymer-Network Incorporation into Single Crystals. Adv. Mater. 2009, 21, 470–473. [Google Scholar] [CrossRef]
- Greiner, M.; Yin, X.; Fernández-Díaz, L.; Griesshaber, E.; Weitzel, F.; Ziegler, A.; Veintemillas-Verdaguer, S.; Schmahl, W.W. Combined Influence of Reagent Concentrations and Agar Hydrogel Strength on the Formation of Biomimetic Hydrogel–Calcite Composites. Cryst. Growth Des. 2018, 18, 1401–1414. [Google Scholar] [CrossRef]
- Göbel, C.; Simon, P.; Buder, J.; Tlatlik, H.; Kniep, R. Phase formation and morphology of calcium phosphate–gelatine-composites grown by double diffusion technique: The influence of fluoride. J. Mater. Chem. 2004, 14, 2225–2230. [Google Scholar] [CrossRef]
- Nindiyasari, F.; Ziegler, A.; Griesshaber, E.; Fernández-Díaz, L.; Huber, J.; Walther, P.; Schmahl, W.W. Effect of Hydrogel Matrices on Calcite Crystal Growth Morphology, Aggregate Formation, and Co-Orientation in Biomimetic Experiments and Biomineralization Environments. Cryst. Growth Des. 2015, 15, 2667–2685. [Google Scholar] [CrossRef]
- Liu, X.Y.; Lim, S.W. Templating and Supersaturation-Driven Anti-Templating: Principles of Biomineral Architecture. J. Am. Chem. Soc. 2003, 125, 888–895. [Google Scholar] [CrossRef]
- Lin, N.; Liu, X.Y. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chem. Soc. Rev. 2015, 44, 7881–7915. [Google Scholar] [CrossRef]
- Li, H.; Xin, H.L.; Muller, D.A.; Estroff, L.A. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science 2009, 326, 1244–1247. [Google Scholar] [CrossRef]
- Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996, 271, 67–69. [Google Scholar] [CrossRef]
- Keene, E.C.; Evans, J.S.; Estroff, L.A. Silk Fibroin Hydrogels Coupled with the n16N−β-Chitin Complex: An in Vitro Organic Matrix for Controlling Calcium Carbonate Mineralization. Cryst. Growth Des. 2010, 10, 5169–5175. [Google Scholar] [CrossRef]
- Chernov, A.A. Modern Crystallography III: Crystal Growth; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Xiao, C.; Li, M.; Wang, B.; Liu, M.-F.; Shao, C.; Pan, H.; Lu, Y.; Xu, B.-B.; Li, S.; Zhan, D.; et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films. Nature Commun. 2017, 8, 1398. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Mao, L.-B.; Jiang, Y.; Liu, M.-F.; Huang, Q.; Yu, Z.; Wang, S.; Yu, S.-H.; Lin, C.; et al. Seeded Mineralization Leads to Hierarchical CaCO3 Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir 2018, 34, 2942–2951. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mao, L.-B.; Li, M.; Chen, Y.; Liu, M.-F.; Xiao, C.; Jiang, Y.; Wang, S.; Yu, S.-H.; Liu, X.Y.; et al. Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO3 Thin Films. Langmuir 2018, 34, 11126–11138. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, D.N.; Preda, R.C.; Yucel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protocols 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Shao, Z.; Vollrath, F. Silk Fibroin-Regulated Crystallization of Calcium Carbonate. Adv. Funct. Mater. 2008, 18, 2172–2179. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, Y.; Chen, X.; Shao, Z. Templating effect of silk fibers in the oriented deposition of aragonite. Chem. Commun. 2008, 43, 5511–5513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, J.; Zhou, L.; Ye, C.; Omenetto, F.G.; Kaplan, D.L.; Ling, S. Design, Fabrication, and Function of Silk-Based Nanomaterials. Adv. Funct. Mater. 2018, 28, 1805305. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Kim, U.J.; Park, J.; Kim, H.J.; Wada, M.; Kaplan, D.L. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 2005, 26, 2775–2785. [Google Scholar] [CrossRef]
- Li, H.; Estroff, L.A. Porous calcite single crystals grown from a hydrogel medium. CrystEngComm 2007, 9, 1153–1155. [Google Scholar] [CrossRef]
- Li; Estroff, L.A. Hydrogels Coupled with Self-Assembled Monolayers: An in Vitro Matrix to Study Calcite Biomineralization. J. Am. Chem. Soc. 2007, 129, 5480–5483. [Google Scholar] [CrossRef]
- Song, R.-Q.; Cölfen, H.; Xu, A.-W.; Hartmann, J.; Antonietti, M. Polyelectrolyte-Directed Nanoparticle Aggregation: Systematic Morphogenesis of Calcium Carbonate by Nonclassical Crystallization. ACS Nano 2009, 3, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-Y.; Schenk, A.S.; Ihli, J.; Kulak, A.N.; Hetherington, N.B.J.; Tang, C.C.; Schmahl, W.W.; Griesshaber, E.; Hyett, G.; Meldrum, F.C. A critical analysis of calcium carbonate mesocrystals. Nat. Commun. 2014, 5, 4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeppler, V.; Lemanis, R.; Reich, E.; Pusztai, T.; Gránásy, L.; Zlotnikov, I. Crystal growth kinetics as an architectural constraint on the evolution of molluscan shells. Proc. Natl. Acad. Sci. USA 2019, 116, 20388–20397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nys, Y.; Gautron, J.; Garcia-Ruiz, J.M.; Hincke, M.T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. C. R. Palevol 2004, 3, 549–562. [Google Scholar] [CrossRef]
- Checa, A.G.; Rodríguez-Navarro, A.B. Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). Biomaterials 2005, 26, 1071–1079. [Google Scholar] [CrossRef]
- Checa, A.G.; Okamoto, T.; Ramírez, J. Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition. Proc. R. Soc. London Ser. B 2006, 273, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, P.U.P.A.; Metzler, R.A.; Zhou, D.; Scholl, A.; Doran, A.; Young, A.; Kunz, M.; Tamura, N.; Coppersmith, S.N. Gradual Ordering in Red Abalone Nacre. J. Am. Chem. Soc. 2008, 130, 17519–17527. [Google Scholar] [CrossRef] [Green Version]
- Cölfen, H.; Antonietti, M. Mesocrystals and Nonclassical Crystallization; John Wiley & Sons Ltd: Chichester, England, 2008. [Google Scholar]
- Gal, A.; Kahil, K.; Vidavsky, N.; DeVol, R.T.; Gilbert, P.U.P.A.; Fratzl, P.; Weiner, S.; Addadi, L. Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase. Adv. Funct. Mater. 2014, 24, 5420–5426. [Google Scholar] [CrossRef]
- De Yoreo, J.J.; Gilbert, P.U.; Sommerdijk, N.A.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef]
- Gries, K.; Kröger, R.; Kübel, C.; Fritz, M.; Rosenauer, A. Investigations of voids in the aragonite platelets of nacre. Acta Biomater. 2009, 5, 3038–3044. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Ganesan, K.; Yang, P.; Kulak, A.N.; Borukhin, S.; Pechook, S.; Ribeiro, L.; Kröger, R.; Eichhorn, S.J.; Armes, S.P.; et al. An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nat. Mater. 2011, 10, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.P.; Roncal-Herrero, T.; Morgan, T.; Dunn, K.E.; Rao, A.; Kunitake, J.A.M.R.; Lui, S.; Bilton, M.; Estroff, L.A.; Kröger, R.; et al. Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. Biochemistry 2016, 55, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Fielding, L.A.; Ratcliffe, L.P.D.; Wang, Y.-W.; Meldrum, F.C.; Armes, S.P. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains. J. Am. Chem. Soc. 2016, 138, 11734–11742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauphin, Y. Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (Mollusca, Bivalvia, Pteriomorpha). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 2002, 132, 577–590. [Google Scholar] [CrossRef]
- Xie, J.; Ping, H.; Tan, T.; Lei, L.; Xie, H.; Yang, X.-Y.; Fu, Z. Bioprocess-inspired fabrication of materials with new structures and functions. Prog. Mater Sci. 2019, 105, 100571. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Feng, Y.-x.; Li, M.; Guo, S.; Jiang, Y. Seeded Mineralization in Silk Fibroin Hydrogel Matrices Leads to Continuous Rhombohedral CaCO3 Films. Crystals 2020, 10, 166. https://doi.org/10.3390/cryst10030166
Wang D, Feng Y-x, Li M, Guo S, Jiang Y. Seeded Mineralization in Silk Fibroin Hydrogel Matrices Leads to Continuous Rhombohedral CaCO3 Films. Crystals. 2020; 10(3):166. https://doi.org/10.3390/cryst10030166
Chicago/Turabian StyleWang, Dan, Yu-xuan Feng, Ming Li, Shengdi Guo, and Yuan Jiang. 2020. "Seeded Mineralization in Silk Fibroin Hydrogel Matrices Leads to Continuous Rhombohedral CaCO3 Films" Crystals 10, no. 3: 166. https://doi.org/10.3390/cryst10030166
APA StyleWang, D., Feng, Y. -x., Li, M., Guo, S., & Jiang, Y. (2020). Seeded Mineralization in Silk Fibroin Hydrogel Matrices Leads to Continuous Rhombohedral CaCO3 Films. Crystals, 10(3), 166. https://doi.org/10.3390/cryst10030166