Mechanical, Dielectric, and Thermal Attributes of Polyimides Stemmed Out of 4, 4’–Diaminodiphenyl Ether
Abstract
:1. Introduction
2. Experiential
2.1. Materials
2.2. Integration of PI Films
2.3. Characterization and Tests
3. Findings and Discussions
3.1. PI Films’ Structure
3.2. Mechanical Properties of PI Films
3.3. Dielectric Attributed Harbored by PI Films
3.4. Breakdown Strength Harbored by PI Films
3.5. Thermal Properties Harbored by PI Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hasegawa, M.; Horie, K. Photophysics, photochemistry, and optical properties of polyimides. Prog. Polym. Sci. 2001, 26, 259–335. [Google Scholar] [CrossRef]
- Sazanov, Y.N. Applied significance of polyimides. Russ. J. Appl. Chem. 2001, 74, 1253–1269. [Google Scholar] [CrossRef]
- Mazoniene, E.; Bendoraitiene, J.; Peciulyte, L.; Diliunas, S.; Zemaitaitis, A. (Co) polyimides from commonly used monomers, and their nanocomposites. Prog. Solid State Chem. 2006, 34, 201–211. [Google Scholar] [CrossRef]
- Ge, J.J.; Zhang, D.; Li, Q.; Hou, H.; Graham, M.J.; Dai, L.; Cheng, S.Z. Multiwalled carbon nanotubes with chemically grafted polyetherimides. J. Am. Chem. Soc. 2005, 127, 9984–9985. [Google Scholar] [CrossRef] [PubMed]
- Meador, M.A. Recent advances in the development of processable high-temperature polymers. Annu. Rev. Mater. Sci. 1998, 28, 599–630. [Google Scholar] [CrossRef]
- Chung, I.S.; Park, C.E.; Ree, M.; Kim, S.Y. Soluble polyimides containing benzimidazole rings for interlevel dielectrics. Chem. Mater. 2001, 13, 2801–2806. [Google Scholar] [CrossRef]
- Tagawa, M.; Maeda, K.I.; Kajita, T.; Yokota, K.; Akamatsu, K.; Nawafune, H. Atomic beam-induced fluorination of polyimide and its application to site-selective Cu metallization. Langmuir 2007, 23, 11351–11354. [Google Scholar] [CrossRef]
- Liaw, D.J.; Wang, K.L.; Huang, Y.C.; Lee, K.R.; Lai, J.Y.; Ha, C.S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Guo, Y.; Lyu, Z.; Yang, X.; Lu, Y.; Ruan, K.; Wu, Y.; Gu, J. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos. Part B Eng. 2019, 164, 732–739. [Google Scholar] [CrossRef]
- Matsuura, T.; Hasuda, Y.; Nishi, S.; Yamada, N. Polyimide derived from 2, 2’-bis (trifluoromethyl)-4, 4’-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2, 2’-bis (3, 4-dicarboxyphenyl) hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules 1991, 24, 5001–5005. [Google Scholar] [CrossRef]
- Jiang, X.; Bin, Y.; Matsuo, M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005, 46, 7418–7424. [Google Scholar] [CrossRef]
- Bin, Y.; Oishi, K.; Koganemaru, A.; Zhu, D.; Matsuo, M. Catalytic effect of nickel under carbonization of polyimide films. Carbon 2005, 43, 1617–1627. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, X.; Ruan, K.; Kong, J.; Dong, M.; Zhang, J.; Guo, Z. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, S.H.; Chen, Y.J. Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. Eur. Polym. J. 2002, 38, 815–828. [Google Scholar] [CrossRef]
- Feger, C.; Khojasteh, M.M.; Htoo, M.S. Advances in Polyimide Science and Technology; Technomic Press: Lancaster, UK, 1993; pp. 15–32. ISBN 0-87762-983-8. [Google Scholar]
- Ghosh, M. Polyimides: Fundamentals and Applications; Marcel Dekker Press: New York, NY, USA, 1996; p. 471. ISBN 0-8247-9466-4. [Google Scholar]
- Mittal, K.L. Polyimides: Synthesis, Characterization and Applications; Springer Science & Business Media Press: New York, NY, USA, 1982; p. 537. ISBN 978-1-4615-7639-6. [Google Scholar]
- Stenzenberger, H.D.; Hergenrother, P.M. Polyimides; Springer Science & Business Media Press: New York, NY, USA, 1990; p. 34. ISBN 978-94-010-9663-8. [Google Scholar]
- Hasegawa, M.; Sensui, N.; Shindo, Y.; Yokota, R. Structure and properties of novel asymmetric biphenyl type polyimides. Homo-and copolymers and blends. Macromolecules 1999, 32, 387–396. [Google Scholar] [CrossRef]
- Smith, Z.P.; Hernández, G.; Gleason, K.L.; Anand, A.; Doherty, C.M.; Konstas, K.; Freeman, B.D. Effect of polymer structure on gas transport properties of selected aromatic polyimides, polyamides and TR polymers. J. Membr. Sci. 2015, 493, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Niu, H.; Zhang, M.; Ge, Q.; Li, Y.; Wu, D. Structures and properties of polyimide fibers containing ether units. J. Mater. Sci. 2015, 50, 4104–4114. [Google Scholar] [CrossRef]
- Coletta, E.; Toney, M.F.; Frank, C.W. Effects of aromatic regularity on the structure and conductivity of polyimide-poly (ethylene glycol) materials doped with ionic liquid. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 509–521. [Google Scholar] [CrossRef]
- Tamai, S.; Yamaguchi, A.; Ohta, M. Melt processible polyimides and their chemical structures. Polymer 1996, 37, 3683–3692. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Lin, J.; Yang, W.; Li, H.; Wen, Y. Interfacial polarity modulation of KTa0.5Nb0.5O3 nanoparticles and its effect on dielectric loss and breakdown strength of poly (vinylidene fluoride) nanocomposites with high permittivity. J. Phys. Chem. C 2016, 120, 28423. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Lin, J.; Yang, W.; Li, H.; Wen, Y.; Lei, Q. Nano-KTN@ Ag/PVDF composite films with high permittivity and low dielectric loss by introduction of designed KTN/Ag core/shell nanoparticles. J. Mater. Chem. C 2016, 4, 8070–8076. [Google Scholar] [CrossRef]
PI Films | Linear Fitting Results | Weibull Parameters | |||
---|---|---|---|---|---|
Slope | ln(−ln(1−P(E)) Intercept | R | β | α/kVmm−1 | |
BTDA-PI | 9.68 | −59.74 | 0.9702 | 9.68 | 478.90 |
BPDA-PI | 10.65 | −62.60 | 0.9612 | 10.65 | 357.07 |
PMDA-PI | 4.13 | −23.91 | 0.9547 | 4.13 | 326.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Zhang, K.; Dou, S.; Zhao, J.; Yan, X.; Li, Y. Mechanical, Dielectric, and Thermal Attributes of Polyimides Stemmed Out of 4, 4’–Diaminodiphenyl Ether. Crystals 2020, 10, 173. https://doi.org/10.3390/cryst10030173
Zhang P, Zhang K, Dou S, Zhao J, Yan X, Li Y. Mechanical, Dielectric, and Thermal Attributes of Polyimides Stemmed Out of 4, 4’–Diaminodiphenyl Ether. Crystals. 2020; 10(3):173. https://doi.org/10.3390/cryst10030173
Chicago/Turabian StyleZhang, Panpan, Ke Zhang, Shuliang Dou, Jiupeng Zhao, Xiangqiao Yan, and Yao Li. 2020. "Mechanical, Dielectric, and Thermal Attributes of Polyimides Stemmed Out of 4, 4’–Diaminodiphenyl Ether" Crystals 10, no. 3: 173. https://doi.org/10.3390/cryst10030173
APA StyleZhang, P., Zhang, K., Dou, S., Zhao, J., Yan, X., & Li, Y. (2020). Mechanical, Dielectric, and Thermal Attributes of Polyimides Stemmed Out of 4, 4’–Diaminodiphenyl Ether. Crystals, 10(3), 173. https://doi.org/10.3390/cryst10030173