Rosebengal-Loaded Nanoporous Structure Based on Rare Earth Metal-Organic-Framework: Synthesis, Characterization and Photophysical Performance
Abstract
:1. Introduction
2. Experimental Brief
2.1. General Information
2.2. Synthesis of Sensing Probe Precursor RS6h
2.3. Fabrication of Supporting Platform EuBTC
2.4. Synthesis of the Dye-MOF Hybrid Structure RS6h@EuBTC
2.5. Photophysical Measurement Details
3. Results and Discussion
3.1. Characterization
3.1.1. Micromorphology and Crystal Lattice
3.1.2. IR, TGA and Elemental Analysis
3.1.3. Optical Characterization
3.2. Colorimetric and Ratiometric Spectral Response
3.2.1. Colorimetric Response Based on Absorption Spectra
3.2.2. Ratiometric Response Based on Emission Spectra
3.2.3. Instant Response and Signal Stability
3.2.4. Selective Response
3.2.5. Sensing Mechanism
3.3. Practical Sensing Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagarkar, S.S.; Desai, A.V.; Ghosh, S.K. Engineering metal–organic frameworks for aqueous phase 2, 4, 6-trinitrophenol (TNP) sensing. CrystEngComm 2016, 18, 2994–3007. [Google Scholar] [CrossRef]
- Chopra, R.; Bhalla, V.; Kumar, M.; Kaur, S. Rhodamine appended hexaphenylbenzene derivative: Through bond energy transfer for sensing of picric acid. RSC Adv. 2015, 5, 24336–24341. [Google Scholar] [CrossRef]
- Shanmugaraju, S.; Mukherjee, P.S. π-Electron rich small molecule sensors for the recognition of nitroaromatics. Chem. Commun. 2015, 51, 16014–16032. [Google Scholar] [CrossRef] [PubMed]
- Joarder, B.; Desai, A.V.; Samanta, P.; Mukherjee, S.; Ghosh, S.K. Selective and Sensitive Aqueous-Phase Detection of 2, 4, 6-Trinitrophenol (TNP) by an Amine-Functionalized Metal–Organic Framework. Chemistry 2015, 21, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.E. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 2001, 54, 427–438. [Google Scholar] [CrossRef]
- Sylvia, J.M.; Janni, J.A.; Klein, J.D.; Spencer, K.M. Surface-enhanced Raman detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem. 2000, 72, 5834–5840. [Google Scholar] [CrossRef]
- Germain, M.E.; Knapp, M.J. Optical explosives detection: From color changes to fluorescence turn-on. Chem. Soc. Rev. 2009, 38, 2543–2555. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Joarder, B.; Chaudhari, A.K.; Mukherjee, S.; Ghosh, S.K. Highly selective detection of nitro explosives by a luminescent metal–organic framework. Angew. Chem. Int. Ed. 2013, 52, 2881–2885. [Google Scholar] [CrossRef]
- Zhao, S.N.; Song, X.Z.; Zhu, M.; Meng, X.; Wu, L.L.; Feng, J.; Song, S.Y.; Zhang, H.J. Encapsulation of Ln III Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln III Ion Probe and Two-Color Luminescent Sensors. Chemistry 2015, 21, 9748–9752. [Google Scholar] [CrossRef]
- Campagnol, N.; Souza, E.R.; de Vos, D.E.; Binnemans, K.; Fransaer, J. Luminescent terbium-containing metal–organic framework films: New approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun. 2014, 50, 12545–12547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, B.; Ma, H.; Zhang, L.; Zheng, Y. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens. Bioelectron. 2016, 85, 287–293. [Google Scholar] [CrossRef]
- Dong, M.J.; Zhao, M.; Ou, S.; Zou, C.; Wu, C.D. A luminescent dye @ MOF platform: Emission fingerprint relationships of volatile organic molecules. Angew. Chem., Int. Ed. 2014, 53, 1575–1579. [Google Scholar] [CrossRef]
- Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOF⊃ dye composite for ratiometric temperature sensing. Adv. Mater. 2015, 27, 1420–1425. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, B.; Zhang, L.M.; Liu, L.N.; Zuo, Q.H.; Li, P. A highly selective regenerable optical sensor for detection of mercury (II) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New J. Chem. 2010, 34, 1946–1953. [Google Scholar] [CrossRef]
- Liu, K.; You, H.; Zheng, Y.; Jia, G.; Zhang, L.; Huang, Y.; Yang, M.; Song, Y.; Zhang, H. Facile shape-controlled synthesis of luminescent europium benzene-1,3,5-tricarboxylate architectures at room temperature. CrystEngComm 2009, 11, 2622–2628. [Google Scholar] [CrossRef]
- Wen, Y.; Cheng, J.; Feng, Y.; Zhang, J.; Li, Z.; Yao, Y. Yao. Chin. J. Struct. Chem. 2005, 24, 1440. [Google Scholar]
- Zhang, L.; Li, B. A series of Eu (III) emitters with a novel triphenylamine-derived beta-diketone ligand. J. Lumin. 2009, 129, 1304–1308. [Google Scholar] [CrossRef]
- Xiao, J.D.; Qiu, L.G.; Ke, F.; Yuan, Y.P.; Xu, G.S.; Wang, Y.M.; Jiang, X. Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. J. Mater. Chem. A 2013, 1, 8745–8752. [Google Scholar] [CrossRef]
- Gole, B.; Bar, A.K.; Mukherjee, P.S. Modification of extended open frameworks with fluorescent tags for sensing explosives: Competition between size selectivity and electron deficiency. Chemistry 2014, 20, 2276–2291. [Google Scholar] [CrossRef]
- Song, X.Z.; Song, S.Y.; Zhao, S.N.; Hao, Z.M.; Zhu, M.; Meng, X.; Wu, L.L.; Zhang, H.J. Single-Crystal-to-Single-Crystal transformation of a europium (III) metal–organic framework producing a multi-responsive luminescent sensor. Adv. Funct. Mater. 2014, 24, 4034–4041. [Google Scholar] [CrossRef]
- Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H.S.; Konar, S. Stable multiresponsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner. Chem. Mater. 2015, 27, 5349–5360. [Google Scholar] [CrossRef]
- Mostakim, S.K.; Biswas, S. A thiadiazole-functionalized Zr (IV)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid. CrystEngComm 2016, 18, 3104–3113. [Google Scholar]
- Hu, X.L.; Qin, C.; Wang, X.L.; Shao, K.Z.; Su, Z.M. A luminescent dye@ MOF as a dual-emitting platform for sensing explosives. Chem. Commun. 2015, 51, 17521–17524. [Google Scholar] [CrossRef]
TNP Concentration (μM) | 0 | 50 | 100 | 120 |
---|---|---|---|---|
552 nm (ns) | 3.29 | 3.83 | 4.26 | 5.77 |
615 nm (μs) | 127.4 | 124.9 | 124.1 | 120.8 |
TNP Added (μM) | TNP Detected (μM) | Error |
---|---|---|
0 | 1.2 | N/A |
20 | 22.6 | 113% |
50 | 54.6 | 109% |
100 | 108.5 | 109% |
120 | 125.9 | 105% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Yu, H.; Zhang, J.; Bai, Y.; Guan, Y.; Yu, J.; Guo, L. Rosebengal-Loaded Nanoporous Structure Based on Rare Earth Metal-Organic-Framework: Synthesis, Characterization and Photophysical Performance. Crystals 2020, 10, 185. https://doi.org/10.3390/cryst10030185
Song K, Yu H, Zhang J, Bai Y, Guan Y, Yu J, Guo L. Rosebengal-Loaded Nanoporous Structure Based on Rare Earth Metal-Organic-Framework: Synthesis, Characterization and Photophysical Performance. Crystals. 2020; 10(3):185. https://doi.org/10.3390/cryst10030185
Chicago/Turabian StyleSong, Kai, Han Yu, Jingyi Zhang, Yumeng Bai, Yanjun Guan, Jingbo Yu, and Liquan Guo. 2020. "Rosebengal-Loaded Nanoporous Structure Based on Rare Earth Metal-Organic-Framework: Synthesis, Characterization and Photophysical Performance" Crystals 10, no. 3: 185. https://doi.org/10.3390/cryst10030185
APA StyleSong, K., Yu, H., Zhang, J., Bai, Y., Guan, Y., Yu, J., & Guo, L. (2020). Rosebengal-Loaded Nanoporous Structure Based on Rare Earth Metal-Organic-Framework: Synthesis, Characterization and Photophysical Performance. Crystals, 10(3), 185. https://doi.org/10.3390/cryst10030185