Microrelief of Rounded Diamond Crystals as an Indicator of the Redox Conditions of Their Resorption in a Kimberlite Melt
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. {111} Faces
3.2. Rounded Surfaces at Octahedron Edges
4. Discussion
4.1. Trigons on Natural Diamonds
4.2. Tetrahexahedroid Surfaces on Natural Diamonds
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moore, M.; Lang, A.R. On the origin of the rounded dodecahedral habit of natural diamond. J. Cryst. Growth 1974, 26, 133–139. [Google Scholar] [CrossRef]
- Orlov, Y.L. The Mineralogy of Diamond; John Wiley: New York, NY, USA, 1977; 235p. [Google Scholar]
- Robinson, D.N. The characteristics of natural diamond and their interpretation. Miner. Sci. Eng. 1978, 10, 55–72. [Google Scholar]
- Sunagawa, I. Morphology of natural and synthetic diamond crystals. In Materials Science of the Earth’s Interior; Sunagawa, I., Ed.; Terra Scientific Publishing: Tokyo, Japan, 1984; pp. 303–330. [Google Scholar]
- Mitchell, R.H.; Giuliani, A.; O’Brien, H. What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 2019, 15, 381–386. [Google Scholar] [CrossRef]
- Becker, M.; Le Roex, A.P. Geochemistry of South African on- and off-craton, Group I and Group II kimberlites: Petrogenesis and source region evolution. J. Petrol. 2006, 47, 673–703. [Google Scholar] [CrossRef] [Green Version]
- Kopylova, M.G.; Matveev, S.; Raudsepp, M. Searching for parental kimberlite melt. Geochim. Cosmochim. Acta 2007, 71, 3616–3629. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; Pearson, D.G.; Tappe, S.; Nowell, G.M.; Dowall, D.P. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos 2009, 112, 236–248. [Google Scholar] [CrossRef]
- Kamenetsky, M.B.; Sobolev, A.V.; Kamenetsky, V.S.; Maas, R.; Danyushevsky, L.V.; Thomas, R.; Pokhilenko, N.P.; Sobolev, N.V. Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology 2004, 32, 845–848. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Kamenetsky, M.B.; Golovin, A.V.; Sharygin, V.V.; Maas, R. Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? Lithos 2012, 152, 173–186. [Google Scholar] [CrossRef]
- Arima, M.; Nakayama, K.; Akaishi, M.; Yamaoka, S.; Kanda, H. Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature experiments. Geology 1993, 21, 968–970. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Russ. Geol. Geophys. 2015, 56, 196–210. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Pal’yanov, Y.N. The morphology of diamond crystals, dissolved in the water containing silicate melts. Mineral. Zournal 1990, 12, 14–23. (In Russian) [Google Scholar]
- Kozai, Y.; Arima, M. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 °C and 1 GPa with controlled oxygen partial pressure. Am. Mineral. 2005, 90, 1759–1766. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Canil, D.; Semenets, E. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. Am. Mineral. 2007, 92, 1200–1212. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. The evolution of diamond morphology in the process of dissolution: Experimental data. Am. Mineral. 2007, 92, 909–917. [Google Scholar] [CrossRef]
- Fedortchouk, Y.; Canil, D. Diamond oxidation at atmospheric pressure: Development of surface features and the effect of oxygen fugacity. Eur. J. Mineral. 2009, 21, 623–635. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Influence of the fluid composition on diamond dissolution forms in carbonate melts. Am. Mineral. 2010, 95, 1508–1514. [Google Scholar] [CrossRef]
- Sokol, A.G.; Khokhryakov, A.F.; Palyanov, Y.N. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contrib. Mineral. Petrol. 2015, 170, 26. [Google Scholar] [CrossRef]
- Zhang, Z.; Fedortchouk, Y.; Hanley, J.J. Evolution of diamond resorption in a silicic aqueous fluid at 1–3 GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos 2015, 227, 179–193. [Google Scholar] [CrossRef]
- Frank, F.C.; Lang, A.R. Observation by X-ray diffraction on dislocation in a diamond. Phil. Mag. 1959, 4, 383–386. [Google Scholar] [CrossRef]
- Frank, F.C.; Lang, A.R. X-ray topography of diamond. In Physical Properties of Diamond; Berman, R., Ed.; Clarendon Press: Oxford, UK, 1965; pp. 69–115. [Google Scholar]
- Lang, A.R. Dislocation in diamond and the origin of trigons. Proc. R. Soc. Lond. A 1964, 278, 234–242. [Google Scholar] [CrossRef]
- van Enckevort, W.J.P.; Seal, M. Stress birefringence microscopy of dislocations in type-Ia natural diamond. Phil. Mag. 1988, 57, 939–954. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Effect of crystal defects on diamond morphology during dissolution in the mantle. Am. Mineral. 2015, 100, 1528–1532. [Google Scholar] [CrossRef]
- Yamaoka, S.; Kanda, H.; Setaka, N. Etching of diamond octahedron at high temperatures and pressure with controlled oxygen partial pressure. J. Mater. Sci. 1980, 15, 332–336. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Dissolution forms of diamond crystals in CaCO3 melt at 7 GPa. Russ. Geol. Geophys. 2000, 41, 682–687. [Google Scholar]
- Fedortchouk, Y. Diamond resorption features as a new method for examining conditions of kimberlite emplacement. Contrib. Mineral. Petrol. 2015, 170, 36. [Google Scholar] [CrossRef]
- Fedortchouk, Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Sci. Rev. 2019, 193, 45–65. [Google Scholar] [CrossRef]
- Brey, G.P.; Bulatov, V.K.; Girnis, A.V. Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem. Geol. 2011, 281, 333–342. [Google Scholar] [CrossRef]
- Frank, F.C.; Puttic, K.E.; Wilks, E.M. Etch pits and trigons of diamond: I. Phil. Mag. 1958, 3, 1262–1279. [Google Scholar] [CrossRef]
- Bartoshinsky, Z.V.; Kvasnitsa, V.N. Crystal Morphology of Diamond from Kimberlites; Naukova Dumka: Kiev, Ukraine, 1991; 172p. (In Russian) [Google Scholar]
- Kuharenko, A.A. Diamonds of the Urals; Gosgeoltekhizdat: Moscow, Russia, 1955; 515p. (In Russian) [Google Scholar]
- Bedarida, F. Micromorphology of (111) faces in diamond twins. Acta Cryst. 1967, 23, 708–710. [Google Scholar] [CrossRef]
- Wilks, E.M. Step-sided trigons on diamonds. Philos. Mag. 1961, 69, 1089–1092. [Google Scholar] [CrossRef]
- Angus, J.C.; Dyble, T.J. Etching models for a {111} diamond surface: Calculation of trigon slopes. Surf. Sci. 1975, 50, 157–177. [Google Scholar] [CrossRef]
- Heimann, R.B. Auflösung von Kristallen: Theorie und Techniche Anwendung; Springer: New York, NY, USA, 1975; 270p. [Google Scholar]
- Sangwal, K. Etching of Crystals: Theory, Experiment, and Application; Elsevier: Amsterdam, The Netherlands, 1987; 518p. [Google Scholar]
- Khokhryakov, A.F.; Palyanov, Y.N. Revealing of dislocations in diamond crystals by the selective etching method. J. Cryst. Growth 2006, 293, 469–474. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Revealing of planar defects and partial dislocations in large synthetic diamond crystals by the selective etching. J. Cryst. Growth 2007, 306, 458–464. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N. Effect of nitrogen impurity on etching of synthetic diamond crystals. J. Cryst. Growth 2015, 430, 71–74. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N.; Borzdov, Y.M.; Kozhukhov, A.S.; Sheglov, D.V. Dislocation etching of diamond crystals grown in Mg-C system with the addition of silicon. Diam. Relat. Mater. 2018, 88, 67–73. [Google Scholar] [CrossRef]
- de Theije, F.K.; Roy, O.; van der Laag, N.J.; van Enckevort, W.J.P. Oxidative etching of diamond. Diamond Relat. Mater. 2000, 9, 929–934. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Mokunoa, Y.; Shikata, S. Characterizations of etch pits formed on single crystal diamond surface. Diam. Relat. Mater. 2016, 63, 43–46. [Google Scholar] [CrossRef]
- Ivanov, O.A.; Muchnikov, A.B.; Chernov, V.V.; Bogdanovn, S.A.; Vikharev, A.L.; Butler, J.E. Experimental study of hydrogen plasma etching of (100) single crystal diamond in a MPACVD reactor. Mater. Lett. 2015, 151, 115–118. [Google Scholar] [CrossRef]
- Canil, D.; Bellis, A.J. Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlite magmas II: Applications. J. Petrol. 2007, 48, 231–252. [Google Scholar] [CrossRef] [Green Version]
Run No | H2O, wt % | fO2 | Diamonds | ||
---|---|---|---|---|---|
Initial Weight, mg | Weight Loss, mg | Dissolution Rate, mg/h | |||
Ud-4 | 10 | Re-ReO2 ˂ fO2 ˂ MH | 1.02 | 0.20 | 0.02 |
Ud-5 | 12 | Re-ReO2 ˂ fO2 ˂ MH | 1.02 | 0.24 | 0.024 |
Ud-6 | 12 | Re-ReO2 | 1.12 | 0.17 | 0.017 |
Refer. | Composition of the Etchant | P, GPa | T, °C | α(111) f.b.Trigons | α(111) p.b.Trigons |
---|---|---|---|---|---|
[28] | CaCO3 + SiO2 | 1 | 1150–1350 | P.t. 6°, 10°, 11°, 15°, 19° | P.t. 6°, 8°, 10°, 12° |
[28] | Mg(OH)2 | 1 | 1150–1350 | 10–11°, 15–16°,19–23°, 43° | 11°, 19° |
[20] | H2O ± MgO ± SiO2 | 1–3 | 1150–1400 | 0.6° to 67° | 0.5° to 43° |
[13] | basalt + H2O lamproite | 2.5–5.5 | 1100–1450 | 1–2°, 6–9°, 11–14°, 15–18°, 19–22° | |
[27] | CaCO3 | 7.0 | 1700–1750 | P.t. 5°, 13° | No trigons |
[18] | Na2CO3 + CO2 | 5.7 | 1400 | P.t. 11.5°, 19.5°, 23.5° | P.t. 19.5°, 23.5° |
[18] | CaMg(CO3)2 + CO2 | 7.5 | 1600 | P.t. 11.5°, 19.5°, 23.5° | P.t. 19.5°, 23.5° |
[18] | Na2CO3 + H2O | 5.7 | 1400 | 1–2°, 7.5°, 12.5°, 16°, 20.5° | |
[16] | CaMgSi2O4 + H2O CaCO3 + H2O | 5.7 | 1400 | 7°, 11°, 16°, 21°, 60°32′ | 1°–2° |
Present work | Kimberlite + H2O | 5.7 | 1400 | 1°–2.5° and 10° | 0.5°–3.0° |
[23,28,31,35] | Natural resorption of diamond | 7°, 10°, 17°, 19°, 23°, 60°32′ | 5′–2.5° 3°–5° |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khokhryakov, A.F.; Nechaev, D.V.; Sokol, A.G. Microrelief of Rounded Diamond Crystals as an Indicator of the Redox Conditions of Their Resorption in a Kimberlite Melt. Crystals 2020, 10, 233. https://doi.org/10.3390/cryst10030233
Khokhryakov AF, Nechaev DV, Sokol AG. Microrelief of Rounded Diamond Crystals as an Indicator of the Redox Conditions of Their Resorption in a Kimberlite Melt. Crystals. 2020; 10(3):233. https://doi.org/10.3390/cryst10030233
Chicago/Turabian StyleKhokhryakov, Alexander F., Denis V. Nechaev, and Alexander G. Sokol. 2020. "Microrelief of Rounded Diamond Crystals as an Indicator of the Redox Conditions of Their Resorption in a Kimberlite Melt" Crystals 10, no. 3: 233. https://doi.org/10.3390/cryst10030233
APA StyleKhokhryakov, A. F., Nechaev, D. V., & Sokol, A. G. (2020). Microrelief of Rounded Diamond Crystals as an Indicator of the Redox Conditions of Their Resorption in a Kimberlite Melt. Crystals, 10(3), 233. https://doi.org/10.3390/cryst10030233