Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Diamond Crystallization
3.2. Spectroscopic Characterization
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Takeuchi, S. Recent progress in single-photon and entangled-photon generation and applications. Jpn. J. Appl. Phys. 2014, 53, 030101. [Google Scholar] [CrossRef] [Green Version]
- Orwa, J.O.; Greentree, A.D.; Aharonovich, I.; Alves, A.D.C.; Van Donkelaar, J.; Stacey, A.; Prawer, S. Fabrication of single optical centres in diamond - A review. J. Lumin. 2010, 130, 1646–1654. [Google Scholar] [CrossRef]
- Schloss, J.M.; Barry, J.F.; Turner, M.J.; Walsworth, R.L. Simultaneous broadband vector magnetometry using solid-state spins. Phys. Rev. Appl. 2018, 10, 034044. [Google Scholar] [CrossRef]
- Casola, F.; van der Sar, T.; Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 2018, 3, 17088. [Google Scholar] [CrossRef]
- Barnard, A.S. Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 2009, 134, 1751–1764. [Google Scholar] [CrossRef]
- Mohan, N.; Chen, C.S.; Hsieh, H.H.; Wu, Y.C.; Chang, H.C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 2010, 10, 3692–3699. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Lukin, M.D. Quantum optics with nitrogen-vacancy centres in diamond. In Quantum Optics and Nanophotonics; Fabre, C., Sandoghdar, V., Treps, N., Cugliandolo, L.F., Eds.; Oxford University: Oxford, UK, 2017; pp. 229–270. [Google Scholar]
- Wrachtrup, J.; Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter. 2006, 18, S807–S824. [Google Scholar] [CrossRef]
- Neumann, P.; Kolesov, R.; Naydenov, B.; Beck, J.; Rempp, F.; Steiner, M.; Jacques, V.; Balasubramanian, G.; Markham, M.L.; Twitchen, D.J.; et al. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 2010, 6, 249–253. [Google Scholar] [CrossRef]
- Sipahigil, A.; Jahnke, K.D.; Rogers, L.J.; Teraji, T.; Isoya, J.; Zibrov, A.S.; Jelezko, F.; Lukin, M.D. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 2014, 113, 113602. [Google Scholar] [CrossRef]
- Sukachev, D.D.; Sipahigil, A.; Nguyen, C.T.; Bhaskar, M.K.; Evans, R.E.; Jelezko, F.; Lukin, M.D. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 2017, 119, 223602. [Google Scholar] [CrossRef]
- Siyushev, P.; Metsch, M.H.; Ijaz, A.; Binder, J.M.; Bhaskar, M.K.; Sukachev, D.D.; Sipahigil, A.; Evans, R.E.; Nguyen, C.T.; Lukin, M.D.; et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B. 2017, 96, 081201(R). [Google Scholar] [CrossRef]
- Bhaskar, M.K.; Sukachev, D.D.; Sipahigil, A.; Evans, R.E.; Burek, M.J.; Nguyen, C.T.; Rogers, L.J.; Siyushev, P.; Metsch, M.H.; Park, H.; et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 2017, 118, 223603. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Miyamoto, Y.; Taniguchi, T.; Siyushev, P.; Metsch, M.H.; Jelezko, F.; Hatano, M. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 2017, 119, 253601. [Google Scholar] [CrossRef] [PubMed]
- Tchernij, S.D.; Herzig, T.; Forneris, J.; Kupper, J.; Pezzagna, S.; Traina, P.; Moreva, E.; Degiovanni, I.P.; Brida, G.; Skukan, N.; et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photonics 2017, 4, 2580. [Google Scholar] [CrossRef]
- Trusheim, M.E.; Wan, N.H.; Chen, K.C.; Ciccarino, C.J.; Flick, J.; Sundararaman, R.; Malladi, G.; Bersin, E.; Walsh, M.; Lienhard, B.; et al. Lead-related quantum emitters in diamond. Phys. Rev. B. 2019, 99, 075430. [Google Scholar] [CrossRef] [Green Version]
- Tchernij, S.D.; Lühmann, T.; Forneris, J.; Herzig, T.; Küpper, J.; Damin, A.; Santonocito, S.; Traina, P.; Moreva, E.; Celegato, F.; et al. Photoluminescence of lead-related optical centers in single-crystal diamond. ACS Photonics 2018, 5, 4864–4871. [Google Scholar]
- Kenyon, A.J. Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum Electron. 2002, 26, 225–284. [Google Scholar] [CrossRef]
- Zhong, M.; Hedges, M.P.; Ahlefeldt, R.L.; Bartholomew, J.G.; Beavan, S.E.; Wittig, S.M.; Longdell, J.J.; Sellarset, M.J. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 2015, 517, 177–180. [Google Scholar] [CrossRef]
- Magyar, A.; Hu, W.; Shanley, T.; Flatte, M.E.; Hu, E.; Aharonovich, I. Synthesis of luminescent europium defects in diamond. Nat. Commun. 2014, 5, 3523. [Google Scholar] [CrossRef] [Green Version]
- Vanpoucke, D.E.P.; Nicley, S.S.; Raymakers, J.; Maes, W.; Haenen, K. Can europium atoms form luminescent centres in diamond: A combined theoretical–experimental study. Diamond Relat. Mater. 2019, 94, 233–241. [Google Scholar] [CrossRef]
- Cajzl, J.; Akhetova, B.; Nekvindova, P.; Mackova, A.; Malinsky, P.; Oswald, J.; Remes, Z.; Varga, M.; Kromka, A. Co-implantation of Er and Yb ions into single-crystalline and nanocrystalline diamond. Surf. Interface Anal. 2018, 50, 1218–1223. [Google Scholar] [CrossRef]
- Sedov, V.S.; Kuznetsov, S.V.; Ralchenko, V.G.; Mayakova, M.N.; Krivobok, V.S.; Savin, S.S.; Zhuravlev, K.P.; Martyanov, A.K.; Romanishkin, I.D.; Khomich, A.A.; et al. Diamond-EuF3 nanocomposites with bright orange photoluminescence. Diamond Relat. Mater. 2017, 72, 47–52. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Zibrov, I.P.; Malykhin, S.A.; Khmelnitskiy, R.A.; Vlasov, I.I. Synthesis of diamond in double carbon-rare earth element systems. Mater. Lett. 2017, 193, 130–132. [Google Scholar] [CrossRef]
- Ekimov, E.A.; Zibrov, I.P.; Malykhin, S.A.; Khmelnitskiy, R.A.; Vlasov, I.I. Luminescence properties of diamond prepared in the presence of rare-earth elements. Inorg. Mater. 2017, 53, 809–815. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F.; Nechaev, D.V. Diamond crystallization from an Mg-C system at high pressure high temperature conditions. CrystEngComm 2015, 17, 4928–4936. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Khokhryakov, A.F.; Borzdov, Y.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 2017, 19, 4459–4475. [Google Scholar] [CrossRef] [Green Version]
- Palyanov, Y.; Kupriyanov, I.; Borzdov, Y.; Nechaev, D.; Bataleva, Y. HPHT Diamond Crystallization in the Mg-Si-C System: Effect of Mg/Si Composition. Crystals 2017, 7, 119. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Surovtsev, N.V. High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 2016, 16, 3510–3518. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M. High-pressure synthesis and characterization of Sn-doped single crystal diamond. Carbon 2019, 143, 769–775. [Google Scholar] [CrossRef]
- Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High temperature calibration a multi-anvil high-pressure apparatus. High. Pres. Res. 2015, 35, 139–147. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. J. Cryst. Growth 2015, 426, 276–282. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Palyanov, Y.N.; Borzdov, Y.M.; Kozhukhov, A.S.; Sheglov, D.S. Influence of a silicon impurity on growth of diamond crystals in Mg-C systems. Diamond Relat. Mater. 2018, 87, 27–34. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F. Effect of H2O on diamond crystal growth in metal-carbon systems. Cryst. Growth Des. 2012, 12, 5571–5578. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Nechaev, D.V. Effect of the solvent-catalyst composition on diamond crystallization in the Mg-Ge-C system. Diamond Relat. Mater. 2018, 89, 1–9. [Google Scholar] [CrossRef]
- Shionoya, S.; Yen, W.; Yamamoto, H. Phosphor Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Baur, F.; Katelnikovas, A.; Sakirzanovas, S.; Petry, R.; Jüstel, T. Synthesis and optical properties of Li3Ba2La3(MoO4)8:Sm3+ powders for pcLEDs. Z. Naturforsch. 2014, 69b, 183–192. [Google Scholar] [CrossRef]
- Jorgensen, C.K.; Reisfeld, R. Chemistry and spectroscopy of lanthanides. Top. Curr. Chem. 1982, 100, 126–166. [Google Scholar]
- Fan, X.; Freslon, S.; Daiguebonne, C.; Calvez, G.; Le Polles, L.; Bernot, K.; Guillou, O. Heteronuclear lanthanide-based coordination polymers exhibiting tunable multiple emission spectra. J. Mater. Chem. C 2014, 2, 5510–5525. [Google Scholar] [CrossRef]
- Jorgensen, C.K. Modern Aspects of Ligand Field Theory, 1st ed.; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1971; 538p. [Google Scholar]
- Reisfeld, R. Optical properties of rare earths in condensed phase, theory and applications. AIMS Mater. Sci. 2015, 2, 37–60. [Google Scholar] [CrossRef]
Run No. | Composition, wt % | P, GPa | T, °C | Time, min | Diamond Growth on Seed | Diamond Nucleation | α, % | Metastable Graphite |
---|---|---|---|---|---|---|---|---|
M-1 | Mg | 7.8 | 1800 | 30 | + | + | 80 | - |
R-1 | Mg + d2O3 10% | 7.8 | 1800 | 30 | + | + | 90 | - |
R-2 | Mg + Sm2O3 10% | 7.8 | 1800 | 30 | + | + | 80 | - |
R-3 | Mg + Eu2O3 10% | 7.8 | 1800 | 30 | + | + | 70 | - |
R-4 | Mg + Gd2O3 10% | 7.8 | 1800 | 30 | + | + | 75 | - |
R-5 | Mg + Tb2O3 10% | 7.8 | 1800 | 30 | + | + | 75 | - |
R-6 | Mg + Dy2O3 10% | 7.8 | 1800 | 30 | + | + | 70 | - |
R-7 | Mg + Ho2O3 10% | 7.8 | 1800 | 30 | + | + | 80 | - |
R-8 | Mg + Er2O3 10% | 7.8 | 1800 | 30 | + | + | 85 | - |
R-9 | Mg + Tm2O3 10% | 7.8 | 1800 | 30 | + | + | 75 | - |
R-10 | Mg + Yb2O3 10% | 7.8 | 1800 | 30 | + | + | 80 | - |
R-11 | Mg + Sm2O3 20% | 7.8 | 1800 | 30 | + | + | 40 | - |
R-12 | Mg + Sm2O3 30% | 7.8 | 1800 | 30 | + | + | 10 | - |
R-13 | Mg + Sm2O3 40% | 7.8 | 1800 | 30 | + | - | 0 | + |
R-14 | Mg + Sm2O3 50% | 7.8 | 1800 | 30 | - | - | 0 | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palyanov, Y.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Kupriyanov, I.N. Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems. Crystals 2019, 9, 300. https://doi.org/10.3390/cryst9060300
Palyanov YN, Borzdov YM, Khokhryakov AF, Kupriyanov IN. Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems. Crystals. 2019; 9(6):300. https://doi.org/10.3390/cryst9060300
Chicago/Turabian StylePalyanov, Yuri N., Yuri M. Borzdov, Alexander F. Khokhryakov, and Igor N. Kupriyanov. 2019. "Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems" Crystals 9, no. 6: 300. https://doi.org/10.3390/cryst9060300
APA StylePalyanov, Y. N., Borzdov, Y. M., Khokhryakov, A. F., & Kupriyanov, I. N. (2019). Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems. Crystals, 9(6), 300. https://doi.org/10.3390/cryst9060300