Synthesis of Boron-Doped Silicon Film Using Hot Wire Chemical Vapor Deposition Technique
Abstract
:1. Introduction
2. Experimental Section
2.1. HWCVD System Used for Synthesis and Other Apparatus
2.2. Growth of Boron-Doped Polycrystalline Silicon Film
3. Results and Discussion
3.1. SEM Image Analysis
3.2. Crystal Orientation
3.3. Optical Transmission and Reflectance
3.4. Resistivity Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waman, V.S.; Funde, A.M.; Kamble, M.M.; Pramod, M.R.; Hawaldar, R.R.; Amalnerkar, D.P.; Sathe, V.G.; Gosavi, S.W.; Jadkar, S.R. Hydrogenated Nano crystalline Silicon Thin Films Prepared by Hot-Wire Method with Varied Process Pressure. J. Nanotechnol. 2011. [Google Scholar] [CrossRef] [Green Version]
- Jadkar, S.R.; Sali, J.V.; Takwale, M.G.; Musale, D.V.; Kshirsagar, S.T. Synthesis of highly conductive boron-doped p-type hydrogenated microcrystalline silicon (μc-Si:H) by a hot-wire chemical vapor deposition technique. Sol. Energy Mater. Sol. Cells 2000, 64, 333–346. [Google Scholar] [CrossRef]
- Zhang, C.; Meier, M.; Lambertz, A.; Smirnov, V.; Holländer, B.; Gordijn, A.; Merdzhanova, T. Optical and Electrical Effects of p-type μc-SiOx:H in Thin-Film Silicon Solar Cells on Various Front Textures. Int. J. Photoenergy 2014. [Google Scholar] [CrossRef]
- Fathi, E.; Vygranenko, Y.; Vieira, M.; Sazonov, A. Boron-doped nanocrystalline silicon thin films for solar cells. Appl. Surf. Sci. 2011, 257, 8901–8905. [Google Scholar] [CrossRef] [Green Version]
- Filonovich, S.A.; Alpuim, P.; Rebouta, L.; Bourée, J.-E.; Soro, Y.M. Hydrogenated amorphous and nanocrystalline silicon solar cells deposited by HWCVD and RF-PECVD on plastic substrates at 150 °C. J. Non-Cryst. Solids 2008, 354, 2376–2380. [Google Scholar] [CrossRef]
- Green, M.A.; Basore, P.A.; Chang, N.; Clugston, D.; Egan, R.; Evans, R.; Hogg, D.; Jarnason, S.; Keevers, M.; Lasswell, P.; et al. Crystalline silicon on glass (CSG) thin-film solar cell modules. Sol. Energy 2004, 77, 857–863. [Google Scholar] [CrossRef]
- Teplin, C.W.; Ginley, D.S.; Branz, H.M. A new approach to thin film crystal silicon on glass: Biaxially-textured silicon on foreign template layers. J. Non-Cryst. Solids 2006, 352, 984–988. [Google Scholar] [CrossRef]
- Findikoglu, A.T.; Choi, W.; Matias, V.; Holesinger, T.G.; Jia, Q.X.; Peterson, D.E. Well-Oriented Silicon Thin Films with High Carrier Mobility on Polycrystalline Substrates. Adv. Mater. 2005, 17, 1527–1531. [Google Scholar] [CrossRef]
- Park, J.; Shin, C.; Park, H.; Jung, J.; Lee, Y.-J.; Bong, S.; Dao, V.A.; Balaji, N.; Yi, J. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells. Nano Sci. Nano Technol. 2015, 15, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-H.; Zhang, X.-Y.; Zhao, M.J.; Lin, H.-J.; Zhu, W.-Z.; Lien, S.-Y. Silicon Heterojunction Solar Cells with p-Type Silicon Carbon Window Layer. Crystals 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Kale, N. Making Hotwire CVD a Viable Technology Alternative for Bio-MEMS Applications: Device Optimization, Fabrication and Characterization. Ph.D. Thesis, IIT Bombay, Mumbai, India, 2008. [Google Scholar]
- Chadha, T.S.; Dutta, P.K.; Raliya, R.; Mitra, S.; Biswas, P. Sustainable one step process for making carbon-free TiO2 anodes and sodium-ion battery electrochemistry. Sustain. Energy Fuels 2018, 2, 1582–1587. [Google Scholar] [CrossRef]
- Wee, S.H.; Cantoni, C.; Fanning, T.R.; Teplin, C.W.; Bogorin, D.F.; Bornstein, J.; Bowers, K.; Schroeter, P.; Hasoon, F.; Branz, H.M.; et al. Hetero epitaxial film silicon solar cell grown on Ni-W foils. Energy Environ. Sci. 2012, 5, 6052–6056. [Google Scholar] [CrossRef]
- Vallat-Sauvain, E.; Kroll, U.; Meier, J.; Shah, A.; Pohl, J. Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution. J. Appl. Phys. 2000, 87, 3137–3142. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Hossion, M.A.; Kulasekaran, M.; Arora, B.M. Synthesis of oriented and passivated polycrystalline silicon films on glass by hot wire chemical vapor deposition. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 1326–1328. [Google Scholar] [CrossRef]
- Hossion, A.; Arora, B.M. Cross Sectional TEM Characterization of Epitaxial Silicon Film Grown using Hot Wire Chemical Vapor Deposition. J. Thin Film Sci. Technol. 2020, 9, 37–40. Available online: http://www.naturalspublishing.com/Article.asp?ArtcID=20407 (accessed on 2 February 2020).
Exp. No. | Sample Name | Process Pressure in mbar | Substrate Temp. in °C | Gas Flow in Sccm H2:SiH4:5%B2H6 | Growth Duration in Sec | Film Thickness in nm |
---|---|---|---|---|---|---|
Two-stage growth (thin film) | ||||||
1 | 18_Si/SiO2 24_Al2O3 25_Glass/ITO/TiO2 26_Ni-W | 2.4 × 10−1 | 400 | 15:1:5 | 110 | 218 |
2.5 × 10−1 | 600 | 15:1:5 | 1000 | |||
Six-stage growth (thick film) | ||||||
2 | 2_Si/SiO2 27_Glass/ITO/TiO2 29_Ni-W 30_ Al2O3 | 2.3 × 10−1 | 400 | 15:1:5 | 100 | 1085 |
2.1 × 10−1 to 2.3 × 10−1 | 600 | 15:1:5 | 100 | |||
15:1.5:5 | 100 | |||||
13:2:5 | 100 | |||||
12:3:5 | 100 | |||||
10:5:5 | 1000 |
Sample Name | Voltage Volt (V) | Current Amp (I) | Sheet Resistance = (V × 4.532)/I ohm/square | Thickness cm | Resistivity Ohm-cm |
---|---|---|---|---|---|
Polycrystalline silicon thin film | |||||
18_Si/SiO2 | 1.35 | 1 × 10−2 | 6.12 × 102 | 2.18 × 10−5 | 1.33 × 10−2 |
24_Al2O3 | 1.67 | 1 × 10−2 | 7.6 × 102 | 2.18 × 10−5 | 1.65 × 10−2 |
Polycrystalline silicon thick film | |||||
2_Si/SiO2 | 0.93 | 1 × 10−2 | 4.2 × 102 | 1.1 × 10−4 | 4.64 × 10−2 |
30_Al2O3 | 1.58 | 1 × 10−2 | 7.2 × 102 | 1.1 × 10−4 | 7.88 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossion, M.A.; Arora, B.M. Synthesis of Boron-Doped Silicon Film Using Hot Wire Chemical Vapor Deposition Technique. Crystals 2020, 10, 237. https://doi.org/10.3390/cryst10040237
Hossion MA, Arora BM. Synthesis of Boron-Doped Silicon Film Using Hot Wire Chemical Vapor Deposition Technique. Crystals. 2020; 10(4):237. https://doi.org/10.3390/cryst10040237
Chicago/Turabian StyleHossion, M. Abul, and B. M. Arora. 2020. "Synthesis of Boron-Doped Silicon Film Using Hot Wire Chemical Vapor Deposition Technique" Crystals 10, no. 4: 237. https://doi.org/10.3390/cryst10040237
APA StyleHossion, M. A., & Arora, B. M. (2020). Synthesis of Boron-Doped Silicon Film Using Hot Wire Chemical Vapor Deposition Technique. Crystals, 10(4), 237. https://doi.org/10.3390/cryst10040237