The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precursors Preparation
2.2. Fabrication of Thin Film and Device
2.3. Characteristic Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kagan, C.R. Organic–Inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945–947. [Google Scholar] [CrossRef]
- Huang, P.H.; Wang, Y.H.; Ke, J.C.; Huang, C.J. The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells. Energies 2017, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.A.; Baikie, T.; Boix, P.P.; Yantara, N.; Mathews, N.; Mhaisalkar, S.G. Band gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2014, 2, 9221–9225. [Google Scholar] [CrossRef] [Green Version]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050. [Google Scholar] [CrossRef]
- Shi, D.; Adinol, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Collavini, S.; Völker, S.F.; Delgado, J.L. Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed. 2015, 54, 9757–9759. [Google Scholar] [CrossRef]
- Im, J.H.; Lee, C.R.; Lee, J.W.; Park, S.W.; Park, N.G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591. [Google Scholar] [CrossRef] [Green Version]
- Burschka, J.; Pellet, N.; Moon, S.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Docampo, P.; Ball, J.M.; Darwich, M.; Eperon, G.E.; Snaith, H.J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.; Chen, C.; Lu, S.; Liu, Y.; Zhou, H.; et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 24. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Ke, W.J.; Fang, G.J.; Lei, H.W.; Qin, P.L.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X.Z. An efficient and transparent CuS nanosheet film counter electrode for bifacial quantum-dot-sensitized solar cells. J. Power Sources 2014, 248, 809–815. [Google Scholar] [CrossRef]
- Unger, E.L.; Spadavecchia, F.; Nonomura, K.; Palmgren, P.; Cappelletti, G.; Hagfeldt, A.; Johansson, E.M.; Boschloo, G. Effect of the preparation procedure on the morphology of thin TiO2 Films and their device performance in small-molecule bilayer hybrid solar cells. ACS Appl. Mater. Interfaces 2012, 4, 5997–6004. [Google Scholar] [CrossRef]
- Kavan, L.; Tétreault, N.; Moehl, T.; Gratzel, M. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16408–16418. [Google Scholar] [CrossRef]
- Cameron, P.J.; Peter, L.M. Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. J. Phys. Chem. B 2003, 107, 14394–14400. [Google Scholar] [CrossRef]
- Xia, J.B.; Masaki, N.; Jiang, K.J.; Yanagida, S. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 25222–25228. [Google Scholar] [CrossRef]
- Chandiran, A.K.; Yella, A.; Stefik, M.; Heiniger, L.P.; Comte, P.; Nazeeruddin, M.K.; Graatzel, M. Low-temperature crystalline titanium dioxide by atomic layer deposition for dye-Sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 3487–3493. [Google Scholar] [CrossRef]
- Kavan, L.; O’Regan, B.; Kay, A.; Grätzel, M. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J. Electroanal. Chem. 1993, 346, 291–307. [Google Scholar] [CrossRef]
- Zhan, Z.Y.; An, J.N.; Zhang, H.C.; Hansen, R.V.; Zheng, L.X. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. ACS Appl. Mater. Interfaces 2014, 6, 1139–1144. [Google Scholar] [CrossRef]
- Chang, H.M.; Yang, Y.J.; Li, H.C.; Hsu, C.C.; Cheng, I.C.; Chen, J.Z. Preparation of nanoporous TiO2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process. J. Power Sources 2013, 234, 16–22. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, J.; Ding, J.; Hu, J.S.; Wang, D. A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells. Angew. Chem. Int. Ed. 2019, 58, 9414–9418. [Google Scholar] [CrossRef]
- Ke, J.C.; Wang, Y.H.; Chen, K.L.; Huang, C.J. Effect of organic solar cells using various power O2 plasma treatments on the indium tin oxide substrate. J. Colloid Interface Sci. 2016, 465, 311–315. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–Organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
Sample | Jsc (mA/cm2) | Voc (V) | FF | Rs (Ωcm2) | PCE (%) |
---|---|---|---|---|---|
OC 1 for 3000 rpm | 6.51 | 0.85 | 0.14 | 6290 | 0.77 |
OC 1 for 2000 rpm | 7.58 | 0.91 | 0.63 | 173 | 4.38 |
OC 1 for 1000 rpm | 19.21 | 0.88 | 0.52 | 282 | 8.74 |
DC 2 for 3000 rpm | 9.31 | 0.85 | 0.15 | 728 | 1.20 |
DC 2 for 2000 rpm | 16.29 | 0.85 | 0.53 | 142 | 7.40 |
DC 2 for 1000 rpm | 14.41 | 0.91 | 0.75 | 107 | 9.93 |
Sample | OC 1 Film | DC 2 Film | ||||
---|---|---|---|---|---|---|
Speed (rpm) | 1000 | 2000 | 3000 | 1000 | 2000 | 3000 |
Rq (nm) | 22.254 | 23.953 | 23.792 | 29.892 | 28.239 | 26.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-H.; Huang, C.-W.; Kang, C.-C.; Hsu, C.-H.; Lien, S.-Y.; Wang, N.-F.; Huang, C.-J. The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells. Crystals 2020, 10, 236. https://doi.org/10.3390/cryst10030236
Huang P-H, Huang C-W, Kang C-C, Hsu C-H, Lien S-Y, Wang N-F, Huang C-J. The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells. Crystals. 2020; 10(3):236. https://doi.org/10.3390/cryst10030236
Chicago/Turabian StyleHuang, Pao-Hsun, Chien-Wu Huang, Chih-Chieh Kang, Chia-Hsun Hsu, Shui-Yang Lien, Na-Fu Wang, and Chien-Jung Huang. 2020. "The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells" Crystals 10, no. 3: 236. https://doi.org/10.3390/cryst10030236
APA StyleHuang, P. -H., Huang, C. -W., Kang, C. -C., Hsu, C. -H., Lien, S. -Y., Wang, N. -F., & Huang, C. -J. (2020). The Investigation for Coating Method of Titanium Dioxide Layer in Perovskite Solar Cells. Crystals, 10(3), 236. https://doi.org/10.3390/cryst10030236