Comparison of the Ionic Liquid Crystal Phase of [C12C1im][BF4] and [C12C1im]Cl by Atomistic MD Simulations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic Liquid Crystals: Versatile Materials. Chem. Rev. 2016, 116, 4643–4807. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.A.; Kouwer, P.H.J. Key Developments in Ionic Liquid Crystals. Int. J. Mol. Sci. 2016, 17, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, F.; Chi, S.; Dong, S.; Zou, X.; Lv, S.; Bao, L.; Wang, J. Ionic liquid crystal with fast ion-conductive tunnels for potential application in solvent-free Li-ion batteries. Electrochimica Acta 2019, 294, 249–259. [Google Scholar] [CrossRef]
- Yamanaka, N.; Kawano, R.; Kubo, W.; Masaki, N.; Kitamura, T.; Wada, Y.; Watanabe, M.; Yanagida, S. Dye-Sensitized TiO2 Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes†. J. Phys. Chem. B 2007, 111, 4763–4769. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, M.; Fang, X.; Zhang, C.; Huo, Z.; Dai, S. Ionic liquid crystal-based electrolyte with enhanced charge transport for dye-sensitized solar cells. Sci. China Ser. B Chem. 2013, 56, 1463–1469. [Google Scholar] [CrossRef]
- Högberg, D.; Soberats, B.; Yatagai, R.; Uchida, S.; Yoshio, M.; Kloo, L.; Segawa, H.; Kato, T. Liquid-Crystalline Dye-Sensitized Solar Cells: Design of Two-Dimensional Molecular Assemblies for Efficient Ion Transport and Thermal Stability. Chem. Mater. 2016, 28, 6493–6500. [Google Scholar] [CrossRef]
- Bowlas, C.J.; Bruce, D.; Seddon, K.R. Liquid-crystalline ionic liquids. Chem. Commun. 1996, 14, 1625. [Google Scholar] [CrossRef]
- Bugaychuk, S.; Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.; Garbovskiy, Y. Novel materials based on metal-alkanoate liquid crystals and smectic glasses for impulse dynamic holographic applications. Sect. Title Radiat. Chem. Photochem. Photogr. Other Reprogr. Process. 2008, 120–122. [Google Scholar]
- Klimusheva, G.; Mirnaya, T.; Garbovskiy, Y.; Mirnaya, T. Versatile nonlinear-optical materials based on mesomorphic metal alkanoates: Design, properties, and applications. Liq. Cryst. Rev. 2015, 3, 28–57. [Google Scholar] [CrossRef]
- Binnemans, K.; Van Deun, R.; Thijs, B.; Vanwelkenhuysen, I.; Geuens, I. Structure and Mesomorphism of Silver Alkanoates. Chem. Mater. 2004, 16, 2021–2027. [Google Scholar] [CrossRef]
- Schlick, M.C.; Kapernaum, N.; Neidhardt, M.M.; Wöhrle, T.; Stöckl, Y.; Laschat, S.; Giesselmann, F.; Gießelmann, F. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes. ChemPhysChem 2018, 19, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
- Cospito, S.; Beneduci, A.; Veltri, L.; Salamończyk, M.; Chidichimo, G. Mesomorphism and electrochemistry of thienoviologen liquid crystals. Phys. Chem. Chem. Phys. 2015, 17, 17670–17678. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Cospito, S.; La Deda, M.; Chidichimo, G. Fluorescent Materials: Highly Fluorescent Thienoviologen-Based Polymer Gels for Single Layer Electrofluorochromic Devices (Adv. Funct. Mater. 8/2015). Adv. Funct. Mater. 2015, 25, 1239. [Google Scholar] [CrossRef]
- Pibiri, I.; Beneduci, A.; Carraro, M.; Causin, V.; Casella, G.; Corrente, G.A.; Chidichimo, G.; Pace, A.; Riccobono, A.; Saielli, G. Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended bent core. J. Mater. Chem. C 2019, 7, 7974–7983. [Google Scholar] [CrossRef]
- Beneduci, A.; Cospito, S.; La Deda, M.; Veltri, L.; Chidichimo, G. Electrofluorochromism in pi-conjugated ionic liquid crystals. Nat. Commun. 2014, 5, 3105. [Google Scholar] [CrossRef] [Green Version]
- Veltri, L.; Maltese, V.; Auriemma, F.; Santillo, C.; Cospito, S.; La Deda, M.; Chidichimo, G.; Gabriele, B.; De Rosa, C.; Beneduci, A. Mesophase Tuning in Discotic Dimers π-Conjugated Ionic Liquid Crystals through Supramolecular Interactions and the Thermal History. Cryst. Growth Des. 2016, 16, 5646–5656. [Google Scholar] [CrossRef]
- Veltri, L.; Cavallo, G.; Beneduci, A.; Metrangolo, P.; Corrente, G.A.; Ursini, M.; Romeo, R.; Terraneo, G.T.; Gabriele, B. Synthesis and thermotropic properties of new green electrochromic ionic liquid crystals. New J. Chem. 2019, 43, 18285–18293. [Google Scholar] [CrossRef]
- Wuckert, E.; Harjung, M.D.; Kapernaum, N.; Mueller, C.; Frey, W.; Baro, A.; Giesselmann, F.; Laschat, S. Photoresponsive ionic liquid crystals based on azobenzene guanidinium salts. Phys. Chem. Chem. Phys. 2015, 17, 8382–8392. [Google Scholar] [CrossRef]
- Butschies, M.; Frey, W.; Laschat, S. Designer Ionic Liquid Crystals Based on Congruently Shaped Guanidinium Sulfonates. Chem. - A Eur. J. 2012, 18, 3014–3022. [Google Scholar] [CrossRef]
- Sauer, S.; Saliba, S.; Tussetschläger, S.; Baro, A.; Frey, W.; Giesselmann, F.; Laschat, S.; Kantlehner, W. p-Alkoxybiphenyls with guanidinium head groups displaying smectic mesophases. Liq. Cryst. 2009, 36, 275–299. [Google Scholar] [CrossRef]
- Goossens, K.; Lava, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L.; Pattison, P.; Binnemans, K.; Cardinaels, T. Pyrrolidinium Ionic Liquid Crystals with Pendant Mesogenic Groups. Langmuir 2009, 25, 5881–5897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Causin, V.; Saielli, G. Effect of asymmetric substitution on the mesomorphic behaviour of low-melting viologen salts of bis(trifluoromethanesulfonyl)amide. J. Mater. Chem. 2009, 19, 9153. [Google Scholar] [CrossRef]
- Bhowmik, P.; Han, H.; Nedeltchev, I.; Cebe, J. Room-Temperature Thermotropic Ionic Liquid Crystals: Viologen Bis(Triflimide) Salts. Mol. Cryst. Liq. Cryst. 2004, 419, 27–46. [Google Scholar] [CrossRef]
- Asaftei, S.; Ciobanu, M.; Lepadatu, A.M.; Enfeng, S.; Beginn, U. Thermotropic ionic liquid crystals by molecular-assembly and ion pairing of 4,4’-bipyridinium derivatives and tris(dodecyloxy)benzenesulfonats in a non-polar solvent. J. Mater. Chem. 2012, 22, 14426–14437. [Google Scholar] [CrossRef]
- Casella, G.; Causin, V.; Rastrelli, F.; Saielli, G. Viologen-based ionic liquid crystals: Induction of a smectic A phase by dimerisation. Phys. Chem. Chem. Phys. 2014, 16, 5048–5051. [Google Scholar] [CrossRef] [PubMed]
- Casella, G.; Causin, V.; Rastrelli, F.; Saielli, G. Ionic liquid crystals based on viologen dimers: Tuning the mesomorphism by varying the conformational freedom of the ionic layer. Liq. Cryst. 2016, 43, 1161–1173. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ichikawa, T. Design of Viologen-Based Liquid Crystals Exhibiting Bicontinuous Cubic Phases and Their Redox-Active Behavior. Materials (Basel) 2017, 10, 1243. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, P.K.; Killarney, S.T.; Li, J.R.A.; Koh, J.J.; Han, H.; Sharpnack, L.; Agra-Kooijman, D.M.; Fisch, M.R.; Kumar, S. Thermotropic liquid-crystalline properties of extended viologen bis(triflimide) salts. Liq. Cryst. 2017, 45, 872–885. [Google Scholar] [CrossRef]
- Nelyubina, Y.; Shaplov, A.S.; Lozinskaya, E.; Buzin, M.I.; Vygodskii, Y.S. A New Volume-Based Approach for Predicting Thermophysical Behavior of Ionic Liquids and Ionic Liquid Crystals. J. Am. Chem. Soc. 2016, 138, 10076–10079. [Google Scholar] [CrossRef]
- A Mirnaya, T.; Prisyazhnyi, V.D.; A Shcherbakov, V. The liquid-crystalline state of salt melts containing organic ions. Russ. Chem. Rev. 1989, 58, 821–834. [Google Scholar] [CrossRef]
- Martinez-Casado, F.J.; Riesco, M.R.; Yelamos, M.I.R.; Arenas, A.S.; Cheda, J.A.R. The role of calorimetry in the structural study of mesophases and their glass states. J. Therm. Anal. Calorim. 2011, 108, 399–413. [Google Scholar] [CrossRef]
- Mirnaya, T.A.; Yaremchuk, G.G.; Prisyazhnyi, V.D. Formation of smectic mesophases in binary systems of short chain alkanoic acid salts. Liq. Cryst. 1990, 8, 701–705. [Google Scholar] [CrossRef]
- Quevillon, M.; Whitmer, J.K. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations. Materials (Basel) 2018, 11, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frezzato, D.; Saielli, G. Distribution and Dynamic Properties of Xenon Dissolved in the Ionic Smectic Phase of [C16mim][NO3]: MD Simulation and Theoretical Model. J. Phys. Chem. B 2016, 120, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Saielli, G. Fully Atomistic Simulations of the Ionic Liquid Crystal [C16mim][NO3]: Orientational Order Parameters and Voids Distribution. J. Phys. Chem. B 2016, 120, 2569–2577. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, M.E.; Margola, T.; Celebre, G.; De Luca, G.; Saielli, G. A combined LX-NMR and molecular dynamics investigation of the bulk and local structure of ionic liquid crystals. Soft Matter 2019, 15, 4486–4497. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y. Phase Behaviors of Ionic Liquids Heating from Different Crystal Polymorphs toward the Same Smectic-A Ionic Liquid Crystal by Molecular Dynamics Simulation. Crystals 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Schenkel, M.R.; Hooper, J.B.; Moran, M.J.; Robertson, L.; Bedrov, D.; Gin, D. Effect of counter-ion on the thermotropic liquid crystal behaviour of bis(alkyl)-tris(imidazolium salt) compounds. Liq. Cryst. 2014, 41, 1668–1685. [Google Scholar] [CrossRef]
- Saielli, G.; Voth, G.A.; Wang, Y. Diffusion mechanisms in smectic ionic liquid crystals: Insights from coarse-grained MD simulations. Soft Matter 2013, 9, 5716. [Google Scholar] [CrossRef]
- Saielli, G. MD simulation of the mesomorphic behaviour of 1-hexadecyl-3-methylimidazolium nitrate: Assessment of the performance of a coarse-grained force field. Soft Matter 2012, 8, 10279. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, R.; Wang, Y.; Saielli, G. Effect of the Chain Length on the Structure of Ionic Liquids: From Spatial Heterogeneity to Ionic Liquid Crystals. J. Phys. Chem. B 2013, 117, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Margola, T.; Satoh, K.; Saielli, G. Comparison of the Mesomorphic Behaviour of 1:1 and 1:2 Mixtures of Charged Gay-Berne GB(4.4,20.0,1,1) and Lennard-Jones Particles. Crystals 2018, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Saielli, G.; Margola, T.; Satoh, K. Tuning Coulombic interactions to stabilize nematic and smectic ionic liquid crystal phases in mixtures of charged soft ellipsoids and spheres. Soft Matter 2017, 13, 5204–5213. [Google Scholar] [CrossRef] [PubMed]
- Margola, T.; Saielli, G.; Satoh, K. MD simulations of mixtures of charged Gay-Berne and Lennard-Jones particles as models of ionic liquid crystals. Mol. Cryst. Liq. Cryst. 2017, 649, 50–58. [Google Scholar] [CrossRef]
- Saielli, G.; Satoh, K. A coarse-grained model of ionic liquid crystals: The effect of stoichiometry on the stability of the ionic nematic phase. Phys. Chem. Chem. Phys. 2019, 21, 20327–20337. [Google Scholar] [CrossRef] [PubMed]
- Ganzenmüller, G.C.; Patey, G.N. Charge Ordering Induces a Smectic Phase in Oblate Ionic Liquid Crystals. Phys. Rev. Lett. 2010, 105, 137801. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Senthilkumar, B.; Causin, V.; Swamy, V.P.; Wang, Y.; Saielli, G.; Beeran, S.; Paul, V. Influence of the ion size on the stability of the smectic phase of ionic liquid crystals. Soft Matter 2020, 16, 411–420. [Google Scholar]
- Saielli, G.; Wang, Y. Role of the Electrostatic Interactions in the Stabilization of Ionic Liquid Crystals: Insights from Coarse-Grained MD Simulations of an Imidazolium Model. J. Phys. Chem. B 2016, 120, 9152–9160. [Google Scholar] [CrossRef]
- Bradley, A.E.; Hardacre, C.; Holbrey, J.D.; Johnston, S.; McMath, S.E.J.; Nieuwenhuyzen, M. Small-Angle X-ray Scattering Studies of Liquid Crystalline 1-Alkyl-3-methylimidazolium Salts. Chem. Mater. 2002, 14, 629–635. [Google Scholar] [CrossRef]
- Holbrey, J.D.; Seddon, K.R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalton Trans. 1999, 13, 2133–2140. [Google Scholar] [CrossRef]
- Smith, W.; Forester, T.R.; Todorov, I.T. DL_POLY Classic. 2010. Available online: www.ccp5.ac.uk/DL_POLY_CLASSIC (accessed on 27 March 2020).
- Lopes, J.N.C.; Deschamps, J.; Padua, A.A.H.A.H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B 2004, 108, 11250. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Melchionna, S.; Ciccotti, G.; Holian, B.L. Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 1993, 78, 533–544. [Google Scholar] [CrossRef]
- Scott, R.; Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids. Math. Comput. 1991, 57, 442. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.; Forester, T. Parallel macromolecular simulations and the replicated data strategy. Comput. Phys. Commun. 1994, 79, 52–62. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. Available online: http://www.ks.uiuc.edu/Research/vmd/ (accessed on 27 March 2020). [CrossRef]
- Dommert, F.; Wendler, K.; Berger, R.; Site, L.D.; Holm, C. Force Fields for Studying the Structure and Dynamics of Ionic Liquids: A Critical Review of Recent Developments. ChemPhysChem 2012, 13, 1625–1637. [Google Scholar] [CrossRef]
- Bedrov, D.; Piquemal, J.-P.; Borodin, O.; MacKerell, A.D.; Roux, B.; Schröder, C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev. 2019, 119, 7940–7995. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, M.E.; Celebre, G.; De Luca, G.; Zimmermann, H.; Cinacchi, G. Smectic order parameters via liquid crystal NMR spectroscopy: Application to a partial bilayer smectic A phase. Eur. Phys. J. E 2012, 35, 112. [Google Scholar] [CrossRef]
- Youngs, T.G.A.; Hardacre, C. Application of Static Charge Transfer within an Ionic-Liquid Force Field and Its Effect on Structure and Dynamics. ChemPhysChem 2008, 9, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Liu, Z.; Cao, D. Improved Classical United-Atom Force Field for Imidazolium-Based Ionic Liquids: Tetrafluoroborate, Hexafluorophosphate, Methylsulfate, Trifluoromethylsulfonate, Acetate, Trifluoroacetate, and Bis(trifluoromethylsulfonyl)amide. J. Phys. Chem. B 2011, 115, 10027–10040. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, M.; Hata, K.; Tsunashima, K. Self-diffusion behaviors of ionic liquids by MD simulation based on united-atom force field introduced charge scaling by ab initio MO simulation. J. Mol. Liq. 2015, 203, 125–130. [Google Scholar] [CrossRef]
- Schröder, C. Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys. Chem. Chem. Phys. 2012, 14, 3089. [Google Scholar] [CrossRef]
E Coul | E vdW | |
---|---|---|
[C12C1im][BF4] | −193.0 ± 9.6 (~ −195) 1 | −115.1 ± 5.7 (~ −110) 1 |
[C12C1im]Cl | −318.0 ± 15.9 | −66.4 ± 3.3 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saielli, G. Comparison of the Ionic Liquid Crystal Phase of [C12C1im][BF4] and [C12C1im]Cl by Atomistic MD Simulations. Crystals 2020, 10, 253. https://doi.org/10.3390/cryst10040253
Saielli G. Comparison of the Ionic Liquid Crystal Phase of [C12C1im][BF4] and [C12C1im]Cl by Atomistic MD Simulations. Crystals. 2020; 10(4):253. https://doi.org/10.3390/cryst10040253
Chicago/Turabian StyleSaielli, Giacomo. 2020. "Comparison of the Ionic Liquid Crystal Phase of [C12C1im][BF4] and [C12C1im]Cl by Atomistic MD Simulations" Crystals 10, no. 4: 253. https://doi.org/10.3390/cryst10040253
APA StyleSaielli, G. (2020). Comparison of the Ionic Liquid Crystal Phase of [C12C1im][BF4] and [C12C1im]Cl by Atomistic MD Simulations. Crystals, 10(4), 253. https://doi.org/10.3390/cryst10040253