Alkaline Activation of Kaolin Group Minerals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pre-Treatment of Natural Clays
2.3. Alkali-Activation
2.4. Characterization
3. Results and Discussion
3.1. Characterization of Raw Materials
3.2. Characterization of Alkali-Activated Clays
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry, and Use; John Wiley and Sons: Hoboken, NJ, USA, 1974. [Google Scholar]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-zeolite composites: A review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- Takeda, H.; Hashimoto, S.; Yokoyama, H.; Honda, S.; Iwamoto, Y. Characterization of zeolite in zeolite-geopolymer hybrid bulk materials derived from kaolinitic clays. Materials 2013, 6, 1767–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papa, E.; Medri, V.; Amari, S.; Benito, P.; Vaccari, A.; Landi, E. Zeolite-geopolymer composite materials: Production and characterization. J. Clean. Prod. 2018, 171, 76–84. [Google Scholar] [CrossRef]
- Krisnandi, Y.K.; Saragi, I.R.; Sihombing, R.; Ekananda, R.; Sari, I.P.; Griffith, B.E.; Hanna, J.V. Synthesis and characterization of crystalline NaY-Zeolite from Belitung Kaolin as catalyst for n-Hexadecane cracking. Crystals 2019, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.M.; Ferreira, B.F.; Oliveira, N.P.; Nassar, E.J.; Ciuffi, K.J.; Vicente, M.A.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.; et al. Synthesis of zeolite A from metakaolin and its application in the adsorption of cationic dyes. Appl. Sci. 2018, 8, 608. [Google Scholar] [CrossRef] [Green Version]
- Lima-de-Faria, J. Structural Classification of Minerals; Springer: New York, NY, USA, 2003; Volume 2, p. 18. [Google Scholar]
- Hillier, S.; Ryan, P.C. Identification of halloysite (7 Å) by ethylene glycol solvation: The ‘MacEwan effect. Clay Miner. 2002, 37, 487–496. [Google Scholar] [CrossRef]
- Slaty, F.; Khoury, H.; Wastiels, J.; Rahier, H. Characterization of alkali activated kaolinitic clay. Appl. Clay Sci. 2013, 75–76, 120–125. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Wang, A. Alkali activation of halloysite for adsorption and release of ofloxacin. Appl. Surf. Sci. 2013, 287, 54–61. [Google Scholar] [CrossRef]
- San Cristóbal, A.G.; Castelló, R.; Martín Luengo, M.A.; Vizcayno, C. Zeolites prepared from calcined and mechanically modified kaolins. A comparative study. Appl. Clay Sci. 2010, 49, 239–246. [Google Scholar] [CrossRef]
- Król, M.; Rożek, P. The effect of calcination temperature on the metakaolin structure for the synthesis of zeolites. Clay Miner. 2019, 53, 657–663. [Google Scholar] [CrossRef]
- Giese, R.F. Kaolin group minerals. In Encyclopedia of Sediments and Sedimentary Rocks; Middleton, G.V., Church, M.J., Coniglio, M., Hardie, L.A., Longstaffe, F.J., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 398–400. [Google Scholar]
- Velde, B. 1:1 dioctahedral clays (kaolinite, dickite, nacrite halloysite). In Introduction to Clay Minerals—Chemistry, Origins, Uses and Environmental Significance; Crowley, S., Ed.; Chapman and Hall: London, UK, 1992; pp. 79–80. [Google Scholar]
- Brindley, G.W.; Nakahira, M. Kinetics of dehydroxylation of kaolinite and halloysite. J. Am. Ceram. Soc. 1957, 40, 346–350. [Google Scholar] [CrossRef]
- Król, M.; Minkiewicz, J.; Mozgawa, W. IR spectroscopy studies of zeolites in geopolymeric materials derived from kaolinite. J. Mol. Struct. 2016, 1126, 200–206. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W. ATR/FT-IR studies of zeolite formation during alkali-activation of metakaolin. Solid State Sci. 2019, 94, 114–119. [Google Scholar] [CrossRef]
- Król, M.; Rożek, P.; Mozgawa, W. Preparation and Structure of Geopolymer-Based Alkali-Activated Circulating Fuildized Bed Ash Composite for Removing Ni2+ from Wastewater. In Proceedings of the 12th Pacific Rim Conference on Ceramic and Glass Technology: Ceramic Transactions; Singh, D., Fukushima, M., Kim, Y., Shimamura, K., Imanaka, N., Ohji, T., Amoroso, J., Lanagan, M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 264, pp. 147–154. [Google Scholar]
- Abdullah, M.M.A.B.Y.; Liew, M.; Yong, H.C.; Tahir, M.F.M. Clay-Based Materials in Geopolymer Technology. In Cement Based Materials; IntechOpen: Rijeka, Croatia, 2018; pp. 239–264. [Google Scholar]
- Prochon, P.; Zhao, Z.; Courard, L.; Piotrowski, T.; Michel, F.; Garbacz, A. Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortars. Materials 2020, 13, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.C.; Lee, W.K. Effect of Fe2O3 on the physical property of geopolymer paste. Adv. Mater. Res. 2012, 586, 126–129. [Google Scholar] [CrossRef]
- Lemougna, P.N.; MacKenzie, K.J.D.; Jameson, G.N.L.; Rahier, H.; Chinje Melo, U.F. The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: A 57Fe Mössbauer spectroscopy study. J. Mater. Sci. 2013, 48, 5280–5286. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, S.; Yang, J.; Chen, Y.; Ye, N.; Ke, Y.; Tao, S.; Xiao, K.; Hu, J.; Hou, H.; et al. Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr. Build. Mater. 2019, 200, 398–407. [Google Scholar] [CrossRef]
- You, S.; Ho, S.W.; Li, T.; Maneerung, T.; Wang, C.H. Techno-economic analysis of geopolymer production from the coal fly ash with high iron oxide and calcium oxide contents. J. Hazard. Mater. 2019, 361, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Djobo, J.N.Y.; Kumar, A.; Kumar, S. Geopolymerization behavior of fine iron-rich fraction of brown fly ash. J. Build. Eng. 2016, 8, 172–178. [Google Scholar] [CrossRef]
Sample Name | MK/MH [g] | 8 M NaOH [mL] | Water Glass [mL] | SiO2/Al2O3 | Na2O/Al2O3 | H2O/Na2O |
---|---|---|---|---|---|---|
MK1/MH1 | 1.00 | 0.80 | 0.00 | 2.1/2.1 | 0.7/0.9 | 13.2/13.0 |
MK2/MH2 | 1.00 | 0.70 | 0.10 | 2.2/2.3 | 0.7/0.9 | 13.7/13.5 |
MK3/MH3 | 1.00 | 0.60 | 0.20 | 2.4/2.5 | 0.7/0.9 | 14.2/13.9 |
MK4/MH4 | 1.00 | 0.50 | 0.30 | 2.6/2.7 | 0.7/0.9 | 14.7/14.4 |
MK5/MH5 | 1.00 | 0.40 | 0.40 | 2.7/2.9 | 0.7/0.9 | 15.3/15.0 |
Chemical Composition [wt.%] | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | Residual |
---|---|---|---|---|---|---|---|---|---|
MK: metakaolin | 53.74 | 0.47 | 43.82 | 0.87 | 0.27 | 0.14 | 0.13 | 0.36 | 0.20 |
MH: metahalloysite | 40.39 | 2.39 | 32.86 | 20.13 | 0.37 | 0.88 | 0.43 | 0.25 | 2.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biel, O.; Rożek, P.; Florek, P.; Mozgawa, W.; Król, M. Alkaline Activation of Kaolin Group Minerals. Crystals 2020, 10, 268. https://doi.org/10.3390/cryst10040268
Biel O, Rożek P, Florek P, Mozgawa W, Król M. Alkaline Activation of Kaolin Group Minerals. Crystals. 2020; 10(4):268. https://doi.org/10.3390/cryst10040268
Chicago/Turabian StyleBiel, Oliwia, Piotr Rożek, Paulina Florek, Włodzimierz Mozgawa, and Magdalena Król. 2020. "Alkaline Activation of Kaolin Group Minerals" Crystals 10, no. 4: 268. https://doi.org/10.3390/cryst10040268
APA StyleBiel, O., Rożek, P., Florek, P., Mozgawa, W., & Król, M. (2020). Alkaline Activation of Kaolin Group Minerals. Crystals, 10(4), 268. https://doi.org/10.3390/cryst10040268