Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Deep Eutectic Solvents
2.3. Plant Materials
2.4. Extraction
2.5. Determination of Total Phenolic Content
2.6. Determination of Antioxidant Activity
2.7. Determination of Viscosity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations
References
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef] [PubMed]
- Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol. Adv. 2017, 35, 105–134. [Google Scholar] [CrossRef] [PubMed]
- Jablonský, M.; Nosalova, J.; Sladkova, A.; Ház, A.; Kreps, F.; Valka, J.; Miertus, S.; Frecer, V.; Ondrejovic, M.; Sima, J.; et al. Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnol. Adv. 2017, 35, 726–750. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.R. Polyphenols in Plants: Isolation, Purification and Extract Preparation; Academic Press: New York, NY, USA, 2018. [Google Scholar]
- Bianchi, S.; Koch, G.; Janzon, R.; Mayer, I.; Saake, B.; Pichelin, F. Hot water extraction of Norway spruce (Picea abies [Karst.]) bark: Analyses of the influence of bark aging and process parameters on the extract composition. Holzforschung 2016, 70, 619–631. [Google Scholar] [CrossRef]
- Spinelli, S.; Costa, C.; Conte, A.; La Porta, N.; Padalino, L.; Del Nobile, M.A. Bioactive Compounds from Norway Spruce Bark: Comparison Among Sustainable Extraction Techniques for Potential Food Applications. Foods 2019, 8, 524. [Google Scholar] [CrossRef] [Green Version]
- Krogell, J.; Holmbom, B.; Pranovich, A.; Hemming, J.; Willför, S. Extraction and chemical characterization of Norway spruce inner and outer bark. Nord. Pulp Pap. Res. J. 2012, 27, 6–17. [Google Scholar] [CrossRef]
- Co, M.; Fagerlund, A.; Engman, L.; Sunnerheim, K.; Sjöberg, P.J.R.; Turner, C. Extraction of antioxidants from spruce (Picea abies) bark using eco-friendly solvents. Phytochem. Anal. 2011, 23, 1–11. [Google Scholar] [CrossRef]
- Ghitescu, R.-E.; Volf, I.; Carausu, C.; Bühlmann, A.-M.; Gilca, I.A.; Popa, V.I. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 2015, 22, 535–541. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Kasote, D.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. Int. J. Boil. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonský, M.; Šima, J. Deep Eutectic Solvents in Biomass Valorization; Spektrum STU: Bratislava, Slovakia, 2019; p. 176. [Google Scholar]
- Santos-Sánchez, N.-F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants 2019. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Negulescu, G.P. Methods for Total Antioxidant Activity Determination: A Review. Biochem & Anal Biochem 2011, 1, 106. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Ekezie, F.-G.C.; Sun, D.-W.; Cheng, J.-H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci. Technol. 2017, 67, 160–172. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 2017, 135, 33–38. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef]
- Aydin, F.; Yilmaz, E.; Soylak, M. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem. 2018, 243, 442–447. [Google Scholar] [CrossRef]
- Ferrone, V.; Genovese, S.; Carlucci, M.; Tiecco, M.; Germani, R.; Preziuso, F.; Epifano, F.; Carlucci, G.; Taddeo, V.A. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem. 2018, 245, 578–585. [Google Scholar] [CrossRef]
- Ángeles Fernández, M.D.L.; Espino, M.; Gomez, F.J.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Acid and Deep Eutectic Solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatal. Agric. Biotechnol. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Hou, X.-D.; Li, A.-L.; Lin, K.-P.; Wang, Y.-Y.; Kuang, Z.-Y.; Cao, S.-L. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour. Technol. 2018, 249, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Jablonský, M.; Škulcová, A.; Kamenská, L.; Vrška, M.; Šíma, J. Deep Eutectic Solvents: Fractionation of Wheat Straw. BioResources 2015, 10, 8039–8047. [Google Scholar] [CrossRef] [Green Version]
- Jablonsky, M.; Ház, A.; Majova, V. Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose 2019, 26, 7675–7684. [Google Scholar] [CrossRef]
- Jablonský, M.; Majova, V.; Ondrigova, K.; Sima, J. Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose 2019, 26, 3031–3045. [Google Scholar] [CrossRef]
- Škulcova, A.; Haščičová, Z.; Hrdlička, L.; Šima, J.; Jablonský, M. Green solvents based on choline chloride for the extraction of spruce bark (Picea abies). Cellulose Chem. Technol. 2017, 52, 3–4. [Google Scholar]
- Sakti, A.S.; Saputri, F.C.; Mun’Im, A. Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon 2019, 5, e02915. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.H.; Morais, E.; Freire, C.S.; Freire, M.G.; Silvestre, A.J. Extraction of High Value Triterpenic Acids from Eucalyptus globulus Biomass Using Hydrophobic Deep Eutectic Solvents. Molecules 2020, 25, 210. [Google Scholar] [CrossRef] [Green Version]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wan, C. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour. Technol. 2017, 250, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Skulcova, A.; Jablonsky, M.; Haz, A.; Vrska, M. Pretreatment of wheat straw using deep eutectic solvents and ultrasound. Przegląd Pap. 2016, 72, 243–247. [Google Scholar] [CrossRef]
- Kumar, A.K.; Parikh, B.S.; Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 2015, 23, 9265–9275. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Visanko, M.; Liimatainen, H. Acidic Deep Eutectic Solvents As Hydrolytic Media for Cellulose Nanocrystal Production. Biomacromolecules 2016, 17, 3025–3032. [Google Scholar] [CrossRef]
- Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr. Polym. 2017, 169, 167–175. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.-X.; Liu, Y.; Li, J.; Yu, H. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 2018, 20, 2711–2721. [Google Scholar] [CrossRef]
- Xu, G.; Ding, J.-C.; Han, R.-Z.; Dong, J.-J.; Ni, Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 2016, 203, 364–369. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Suárez-Quiroz, M.L.; González-Ríos, O.; Baréa, B.; Cazals, G.; Figueroa-Espinoza, M.C.; Durand, E. Biomolecules extraction from coffee and cocoa by- and co-products using deep eutectic solvents. J. Sci. Food Agric. 2019, 100, 81–91. [Google Scholar] [CrossRef]
- Ljekocevic, M.; Jadranin, M.; Stankovic, J.; Popovic, B.; Nikicevic, N.; Petrovic, A.; Tešević, V. Phenolic composition and anti-DPPH radical scavenging activity of plum wine produced from three plum cultivars. J. Serbian Chem. Soc. 2019, 84, 141–151. [Google Scholar] [CrossRef]
- Hidalgo, G.I.; Almajano, M.P. Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunusa, A.K.; Rohin, M.A.K.; Bakar, C.H.A.B. Free radical scavenging activity of polyphenols. J. Chem. Pharm. Res. 2015, 7, 1975–1980. [Google Scholar]
- Lu, Y.; Foo, L.Y. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 2000, 68, 81–85. [Google Scholar] [CrossRef]
- Anwar, H.; Hussain, G.; Mustafa, I. Antioxidants from Natural Sources. In Antioxidants in Foods and Its Applications; IntechOpen: Rijeka, Croatia, 2018; pp. 1–27. [Google Scholar]
- Alcalde, B.; Granados, M.; Saurina, J. Exploring the Antioxidant Features of Polyphenols by Spectroscopic and Electrochemical Methods. Antioxidants 2019, 8, 523. [Google Scholar] [CrossRef] [Green Version]
- Makris, D.P.; Şahin, S. Polyphenolic Antioxidants from Agri-Food Waste Biomass. Antioxidants 2019, 8, 624. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.F.M.; Pogačnik, L. Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Selvasundhari, L.; Babu, V.; Jenifer, V.; Jeyasudha, S.; Thiruneelakandan, G.; Sivakami, R.; Anthoni, S. In Vitro Antioxidant Activity of Bark Extracts of Rhizophora mucronata. Sci. Technol. Arts Res. J. 2014, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Patrick, A.T.; Samson, F.P.; Jalo, K.; Thagriki, D.; Umaru, H.A.; Madusolumuo, M.A. In vitro antioxidant activity and phytochemical evaluation of aqueous and methanolic stem bark extracts of Pterocarpus erinaceus. World J. Pharm. Res. 2016, 5, 134–151. [Google Scholar]
- Das, S.; Ray, A.; Nasim, N.; Nayak, S.; Mohanty, S. Effect of different extraction techniques on total phenolic and flavonoid contents, and antioxidant activity of betelvine and quantification of its phenolic constituents by validated HPTLC method. 3 Biotech 2019, 9, 37. [Google Scholar] [CrossRef]
- Strižincová, P.; Ház, A.; Burčová, Z.; Feranc, J.; Kreps, F.; Šurina, I.; Jablonský, M. Spruce Bark-A Source of Polyphenolic Compounds: Optimizing the Operating Conditions of Supercritical Carbon Dioxide Extraction. Molecules 2019, 24, 4049. [Google Scholar] [CrossRef] [Green Version]
- Burcova, Z.; Kreps, F.; Strizincova, P.; Haz, A.; Jablonsky, M.; Surina, I.; Schmidt, S. Spruce Bark as a Source of Antioxidant Active Substances. BioResources 2019, 14, 5980–5987. [Google Scholar]
- Kreps, F.; Burčová, Z.; Jablonský, M.; Ház, A.; Frecer, V.; Kyselka, J.; Schmidt, Š.; Šurina, I.; Filip, V. Bioresource of Antioxidant and Potential Medicinal Compounds from Waste Biomass of Spruce. ACS Sustain. Chem. Eng. 2017, 5, 8161–8170. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Genisheva, Z.; Pereira, R.N.; Teixeira, J.A.; Rocha, C.M. Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from Pinus pinaster Bark. ACS Sustain. Chem. Eng. 2019, 7, 8816–8826. [Google Scholar] [CrossRef] [Green Version]
- Lazar, L.; Talmaciu, A.I.; Volf, I.; Popa, V.I. Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark. Ultrason. Sonochem. 2016, 32, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Hemming, J.; Smeds, A.; Reinoso, B.D.; Moure, A.; Willför, S.; Domínguez, H.; Parajó, J. Extraction of low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood with compressed CO2. J. Supercrit. Fluids 2013, 81, 193–199. [Google Scholar] [CrossRef]
- Chupin, L.; Maunu, S.L.; Reynaud, S.; Pizzi, A.; Charrier, B.; Bouhtoury, F.C.-E. Microwave assisted extraction of maritime pine (Pinus pinaster) bark: Impact of particle size and characterization. Ind. Crop. Prod. 2015, 65, 142–149. [Google Scholar] [CrossRef]
- Vieito, C.; Fernandes, É.; Velho, M.V.; Pires, P. The effect of different solvents on extraction yield, total phenolic content and antioxidant activity of extracts from pine bark (Pinus pinaster subsp atlantica). Chem. Eng. Trans. 2018, 64, 127–132. [Google Scholar]
- Jablonsky, M.; Haz, A.; Burcova, Z.; Kreps, F.; Jablonsky, J. Pharmacokinetic properties of biomass-extracted substances isolated by green solvents. BioResources 2019, 14, 6294–6303. [Google Scholar]
- Haz, A.; Strizincova, P.; Majova, V.; Skulcova, A.; Jablonsky, M. Thermal stability of selected deep eutectic solvents. Int. J. Recent. Sci. Res. 2016, 7, 14441–14444. [Google Scholar]
- Lynam, J.; Kumar, N.; Wong, M.J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 2017, 238, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Hromadkova, Z.; Paulsen, B.S.; Polovka, M.; Kostalova, Z.; Ebringerova, A. Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities. Carbohydr. Polym. 2013, 93, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2018, 48, 962–982. [Google Scholar] [CrossRef] [Green Version]
- Francisco, M.; Bruinhorst, A.V.D.; Kroon, M.C. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Arroyo, C.B.; Hernandez, F.L.; Goeltz, J.C. Ternary Deep Eutectic Solvent Behavior of Water and Urea? Choline Chloride Mixtures. J. Phys. Chem. B 2019, 123, 5302–5306. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Karppanen, O.; Venäläinen, M.; Harju, A.M.; Laakso, T. The effect of brown-rot decay on water adsorption and chemical composition of Scots pine heartwood. Ann. For. Sci. 2008, 65, 610. [Google Scholar] [CrossRef] [Green Version]
- Siren, H.; Kaijanen, L.; Kaartinen, S.; Väre, M.; Riikonen, P.; Jernström, E. Determination of statins by gas chromatography—EI/MRM—Tandem mass spectrometry: Fermentation of pine samples with Pleurotus ostreatus. J. Pharm. Biomed. Anal. 2014, 94, 196–202. [Google Scholar] [CrossRef]
- Willför, S.; Hemming, J.; Reunanen, M.; Holmbom, B. Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood. Holzforschung 2003, 57, 359–372. [Google Scholar] [CrossRef]
- Zhao, Z.; Moghadasian, M. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008, 109, 691–702. [Google Scholar] [CrossRef]
- Agra, L.C.; Ferro, J.N.S.; Barbosa, F.T.; Barreto, E. Triterpenes with healing activity: A systematic review. J. Dermatol. Treat. 2015, 26, 1–6. [Google Scholar] [CrossRef]
- Talmaciu, A.I.; Volf, I.; Popa, V.I. Supercritical fluids and ultrasoud assisted extractions applied to spruce bark conversion. Environ. Eng. Manag. J. (EEMJ) 2015, 14, 615–623. [Google Scholar]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Coșarcă, S.-L.; Moacă, E.-A.; Tanase, C.; Muntean, D.L.; Pavel, I.Z.; Dehelean, C.A. Spruce and beech bark aqueous extracts: Source of polyphenols, tannins and antioxidants correlated to in vitro antitumor potential on two different cell lines. Wood Sci. Technol. 2018, 53, 313–333. [Google Scholar] [CrossRef]
- Sládková, A.; Benedeková, M.; Stopka, J.; Šurina, I.; Ház, A.; Strižincová, P.; Čižová, K.; Škulcová, A.; Burčová, Z.; Kreps, F.; et al. Yield of Polyphenolic Substances Extracted from Spruce (Picea abies) Bark by Microwave-Assisted Extraction. BioResources 2016, 11, 9912–9921. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Radošević, K.; Ćurko, N.; Srček, V.G.; Bubalo, M.C.; Tomasevic, M.; Ganić, K.K.; Redovniković, I.R. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Nam, M.W.; Lee, J.; Zhao, J.; Jeong, J.H. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Predescu, N.C.; Papuc, C.; Nicorescu, V.; Gajaila, I.; Goran, G.V.; Petcu, C.D.; Stefan, G. The influence of solid-to-solvent ratio and extraction method on total phenolic content, flavonoid content and antioxidant properties of some ethanolic plant extracts. Rev. Chim. 2016, 67, 1922–1927. [Google Scholar]
- Mahattanatawee, K.; Manthey, J.A.; Luzio, G.; Talcott, S.T.; Goodner, K.; Baldwin, E.A. Total Antioxidant Activity and Fiber Content of Select Florida-Grown Tropical Fruits. J. Agric. Food Chem. 2006, 54, 7355–7363. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Palomo, I.; Rodríguez, L.; Fuentes-Contreras, E.; Arráez-Román, D.; Segura-Carretero, A. Antiplatelet Activity of Natural Bioactive Extracts from Mango (Mangifera Indica L.) and its By-Products. Antioxidants 2019, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, M.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.G.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, P.; Ferreira, S.; Bastos, R.; Ferreira, I.; Cruz, M.; Pinto, A.; Coelho, E.; Passos, C.; Coimbra, M.; Cardoso, S.; et al. Apple pomace extractas a sustainable food ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Bundeesomchok, K.; Rakotomanomana, N.; Fabiano-Tixier, A.-S.; Bott, R.; Wang, Y.; Chemat, F. Towards a Zero-Waste Biorefinery Using Edible Oils as Solvents for the Green Extraction of Volatile and Non-Volatile Bioactive Compounds from Rosemary. Antioxidants 2019, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Buchman, A.L. The Addition of Choline to Parenteral Nutrition. Gastroenterology 2009, 137, S119–S128. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, B.; Dou, L.-L.; Li, P.; Liu, E.-H. Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J. Pharm. Biomed. Anal. 2017, 134, 214–219. [Google Scholar] [CrossRef]
- Karageorgou, I.; Grigorakis, S.; Lalas, S.; Makris, D.P. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur. Food Res. Technol. 2017, 21, 17–1848. [Google Scholar] [CrossRef]
- Li, D.P.; Calvert, P.; Mello, C.; Morabito, K.; Tripathi, A.; Shapley, N.; Gilida, K. Stabilization of Natural Dyes by High Levels of Antioxidants. Adv. Mater. Res. 2012, 441, 192–199. [Google Scholar] [CrossRef]
- Li, Y.-D.; Guan, J.-P.; Tang, R.-C.; Qiao, Y.-F. Application of Natural Flavonoids to Impart Antioxidant and Antibacterial Activities to Polyamide Fiber for Health Care Applications. Antioxidants 2019, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Varatharajan, K.; Rani, D. Screening of antioxidant additives for biodiesel fuels. Renew. Sustain. Energy Rev. 2018, 82, 2017–2028. [Google Scholar] [CrossRef]
- García, M.; Botella, L.; Gil-Lalaguna, N.; Arauzo, J.; Gonzalo, A.; Sánchez, J. Antioxidants for biodiesel: Additives prepared from extracted fractions of bio-oil. Fuel Process. Technol. 2017, 156, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Fiorio, R.; D’Hooge, D.R.; Ragaert, K.; Cardon, L. A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Mass- and Emulsion-Polymerized ABS. Polymers 2018, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boersma, A. Predicting the efficiency of antioxidants in polymers. Polym. Degrad. Stab. 2006, 91, 472–478. [Google Scholar] [CrossRef]
- Abdalla, H.S.; Patel, S. The performance and oxidation stability of sustainable metalworking fluid derived from vegetable extracts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 2027–2040. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
Extraction | TPC (mg GAE/g Dry Extract) | ABTS (mg TEs/g Dry Extract) | FRAP (μmol FeSO4·7H2O/g Dry Extract) | Ref. |
---|---|---|---|---|
SFE_10 % conc. of ethanol, v/v | 0.77 | 2.48 | 8.31 | [7] |
SFE_20 % conc. of ethanol, v/v | 1.24 | 3.08 | 10.01 | [7] |
SFE_40 % conc. of ethanol, v/v | 2.50 | 5.29 | 25.49 | [7] |
PLE_ethanol | 33.45 | 69.87 | 389.10 | [7] |
PLE_ethanol | 46.32 | 257.11 | 506.10 | [7] |
UAE_ethanol | 54.97 | 128.47 | 580.25 | [7] |
SFE_ ethanol | 6.11–11.30 | 0.68–0.79 * | [53] | |
Soxhlet extraction_n-hexane | 8.3 * | [54] | ||
Soxhlet extraction_n-hexane | 4.5 * | [54] | ||
ASE_n-hexane | 15 * | [55] | ||
Ohmic heating extraction_water *** | 136–156 ** | [56] | ||
Ohmic heating extraction_50 % conc. of ethanol, v/v, *** | 807–990 ** | [56] | ||
Extraction_50 % conc. of ethanol, v/v, *** | 394–444 ** | [56] | ||
Extraction_water, *** | 111–120 ** | [56] |
Sample | Component A | Component B | Component C | Component D | Molar Ratio | Water Content (%) | Viscosity at 60 °C (mPa S) |
---|---|---|---|---|---|---|---|
DES1 | ChCl | LacA | - | Water | 1:2:0.96 | 5.4 | 31.1 |
DES2 | ChCl | LacA | - | Water | 1:3:0.97 | 6.4 | 26.1 |
DES3 | ChCl | LacA | - | Water | 1:4:0.99 | 7.1 | 21.3 |
DES4 | ChCl | LacA | - | Water | 1:5:0.98 | 7.5 | 18.9 |
DES5 | ChCl | LacA | 1,3-propanediol | Water | 1:1:1:0.92 | 3.4 | 25.5 |
DES6 | ChCl | LacA | 1,3-propanediol | Water | 1:2:1:0.95 | 4.8 | 18.2 |
DES7 | ChCl | LacA | 1,3-propanediol | Water | 1:3:1:0.91 | 5.6 | 15.9 |
DES8 | ChCl | LacA | 1,3-propanediol | Water | 1:4:1:0.92 | 6.4 | 15.3 |
DES9 | ChCl | LacA | 1,3-propanediol | Water | 1:5:1:0.91 | 6.8 | 14.9 |
DES10 | ChCl | LacA | 1,3-butanediol | Water | 1:1:1:0.93 | 2.9 | 30.0 |
DES11 | ChCl | LacA | 1,3-butanediol | Water | 1:2:1:0.92 | 4.5 | 22.9 |
DES12 | ChCl | LacA | 1,3-butanediol | Water | 1:3:1:1 | 5.4 | 18.6 |
DES13 | ChCl | LacA | 1,3-butanediol | Water | 1:4:1:1 | 6.1 | 16.7 |
DES14 | ChCl | LacA | 1,3-butanediol | Water | 1:5:1:1 | 6.6 | 17.7 |
DES15 | ChCl | LacA | 1,4-butanediol | Water | 1:1:1:0.96 | 3.0 | 30.1 |
DES16 | ChCl | LacA | 1,4-butanediol | Water | 1:2:1:0.92 | 4.5 | 21.2 |
DES17 | ChCl | LacA | 1,4-butanediol | Water | 1:3:1:0.92 | 5.5 | 18.8 |
DES18 | ChCl | LacA | 1,4-butanediol | Water | 1:4:1:0.91 | 6.2 | 15.2 |
DES19 | ChCl | LacA | 1,4-butanediol | Water | 1:5:1:0.91 | 6.7 | 14.4 |
DES20 | ChCl | LacA | 1,5-pentanediol | Water | 1:1:1:0.87 | 3.9 | 29.8 |
DES21 | ChCl | LacA | 1,5-pentanediol | Water | 1:2:1:0.98 | 5.2 | 22.3 |
DES22 | ChCl | LacA | 1,5-pentanediol | Water | 1:3:1:0.90 | 5.9 | 19.5 |
DES23 | ChCl | LacA | 1,5-pentanediol | Water | 1:4:1:0.90 | 6.7 | 18.0 |
DES24 | ChCl | LacA | 1,5-pentanediol | Water | 1:5:1:0.96 | 6.9 | 15.1 |
Conductivity (mS/cm) | Refractive Index | Density (g/cm3) | ||||||
---|---|---|---|---|---|---|---|---|
25 °C | 25 °C | 25 °C | 35 °C | 45 °C | 55 °C | 65 °C | 75 °C | |
DES1 | 1.87 | 1.4647 | 1.197 | 1.197 | 1.197 | 1.197 | 1.196 | 1.193 |
DES2 | 1.84 | 1.4562 | 1.099 | 1.099 | 1.099 | 1.099 | 1.099 | 1.099 |
DES3 | 1.76 | 1.4523 | 1.094 | 1.094 | 1.094 | 1.094 | 1.094 | 1.094 |
DES4 | 1.70 | 1.4499 | 1.070 | 1.070 | 1.070 | 1.070 | 1.069 | 1.068 |
DES5 | 3.45 | 1.4700 | 1.099 | 1.098 | 1.098 | 1.098 | 1.098 | 1.098 |
DES6 | 3.30 | 1.4614 | 1.078 | 1.078 | 1.078 | 1.078 | 1.078 | 1.077 |
DES7 | 2.99 | 1.4553 | 1.076 | 1.076 | 1.076 | 1.076 | 1.076 | 1.075 |
DES8 | 2.60 | 1.4516 | 1.063 | 1.063 | 1.063 | 1.063 | 1.063 | 1.062 |
DES9 | 2.28 | 1.4488 | 1.051 | 1.051 | 1.051 | 1.051 | 1.051 | 1.051 |
DES10 | 2.01 | 1.4689 | 1.083 | 1.083 | 1.082 | 1.082 | 1.082 | 1.082 |
DES11 | 1.95 | 1.4605 | 1.079 | 1.079 | 1.079 | 1.079 | 1.078 | 1.077 |
DES12 | 1.93 | 1.4547 | 1.073 | 1.073 | 1.073 | 1.073 | 1.073 | 1.073 |
DES13 | 1.76 | 1.4515 | 1.037 | 1.036 | 1.036 | 1.036 | 1.036 | 1.035 |
DES14 | 1.59 | 1.4484 | 1.029 | 1.028 | 1.028 | 1.028 | 1.028 | 1.027 |
DES15 | 2.44 | 1.4703 | 1.068 | 1.068 | 1.068 | 1.068 | 1.068 | 1.068 |
DES16 | 2.38 | 1.4619 | 1.067 | 1.067 | 1.067 | 1.067 | 1.067 | 1.067 |
DES17 | 2.27 | 1.4559 | 1.056 | 1.056 | 1.056 | 1.055 | 1.055 | 1.055 |
DES18 | 2.20 | 1.4527 | 1.053 | 1.053 | 1.053 | 1.053 | 1.053 | 1.051 |
DES19 | 2.08 | 1.4499 | 1.017 | 1.017 | 1.017 | 1.017 | 1.017 | 1.017 |
DES20 | 2.24 | 1.4689 | 1.080 | 1.080 | 1.080 | 1.080 | 1.080 | 1.079 |
DES21 | 2.14 | 1.4541 | 1.060 | 1.060 | 1.060 | 1.060 | 1.059 | 1.059 |
DES22 | 2.10 | 1.4539 | 1.058 | 1.058 | 1.058 | 1.058 | 1.057 | 1.057 |
DES23 | 1.96 | 1.4506 | 1.044 | 1.044 | 1.044 | 1.044 | 1.044 | 1.043 |
DES24 | 1.81 | 1.4500 | 1.037 | 1.037 | 1.037 | 1.037 | 1.037 | 1.036 |
DES1: ChCl:LacA:Water (1:2:0.96) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 133.8 | 134.4 | 134.1 | x | 134.1 |
40 | 79.2 | 78.6 | 78.1 | x | 78.6 |
50 | 49.2 | 47.4 | 47.2 | 48.1 | 48.0 |
60 | 30.0 | 31.5 | 31.6 | 31.3 | 31.1 |
70 | 22.2 | 22.8 | 22.3 | 22.3 | 22.4 |
80 | 16.2 | 16.5 | 16.8 | 16.6 | 16.5 |
90 | 13.2 | 12.9 | 13.8 | 13.6 | 13.4 |
DES2: ChCl:LacA:Water (1:3:0.97) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 94.8 | 96.0 | 96.7 | x | 95.8 |
40 | 58.2 | 57.6 | 56.7 | 57.2 | 57.4 |
50 | 36.0 | 35.1 | 35.7 | 35.5 | 35.6 |
60 | 25.2 | 26.4 | 26.2 | 26.5 | 26.1 |
70 | 17.4 | 18.9 | 18.6 | 18.4 | 18.3 |
80 | 15.0 | 13.8 | 13.9 | 14.1 | 14.2 |
90 | 11.4 | 11.4 | 10.8 | 10.6 | 11.1 |
DES3: ChCl:LacA:Water (1:4:0.99) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 78.6 | 79.2 | 79.2 | x | 79.0 |
40 | 49.8 | 47.7 | 47.2 | 48.0 | 48.2 |
50 | 29.0 | 30.9 | 30.7 | 30.3 | 30.2 |
60 | 21.6 | 21.6 | 21.0 | 21.1 | 21.3 |
70 | 16.8 | 15.0 | 15.6 | 15.4 | 15.7 |
80 | 12.6 | 12.6 | 12.6 | 12.6 | 12.6 |
90 | 9.6 | 9.6 | 9.9 | 10.0 | 9.8 |
DES4: ChCl:LacA:Water (1:5:0.98) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 73.2 | 71.7 | 71.4 | x | 72.1 |
40 | 42.6 | 41.7 | 42.1 | 42.5 | 42.2 |
50 | 26.4 | 27.3 | 27.1 | 27.1 | 27.0 |
60 | 19.0 | 19.2 | 18.6 | 18.8 | 18.9 |
70 | 12.6 | 14.2 | 14.2 | 13.7 | 13.7 |
80 | 11.1 | 11.4 | 11.1 | 11.1 | 11.2 |
90 | 8.4 | 8.7 | 8.9 | 9.1 | 8.8 |
DES5: ChCl:LacA:1.3-propanediol:Water (1:1:1:0.92) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 86.4 | 85.5 | 84.9 | x | 85.6 |
40 | 57.2 | 55.2 | 54.4 | 54.3 | 55.3 |
50 | 36.6 | 36.0 | 36.4 | 36.0 | 36.3 |
60 | 25.2 | 26.4 | 25.5 | 25.0 | 25.5 |
70 | 18.6 | 18.9 | 18.1 | 18.1 | 18.4 |
80 | 14.4 | 13.8 | 13.8 | 13.9 | 14.0 |
90 | 10.8 | 10.5 | 10.6 | 10.7 | 10.7 |
DES6: ChCl:LacA:1.3-propanediol:Water (1:2:1:0.95) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 65.4 | 64.2 | 63.6 | x | 64.4 |
40 | 40.2 | 38.7 | 40.0 | 40.1 | 39.8 |
50 | 26.4 | 27.0 | 25.8 | 26.2 | 26.4 |
60 | 18.6 | 17.7 | 18.3 | 18.1 | 18.2 |
70 | 13.2 | 12.9 | 13.5 | 13.7 | 13.3 |
80 | 10.8 | 10.2 | 10.2 | 10.3 | 10.4 |
90 | 8.2 | 8.1 | 8.4 | 8.4 | 8.3 |
DES7: ChCl:LacA:1.3-propanediol:Water (1:3:1:0.91) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 57.6 | 57.6 | 56.4 | 56.4 | 57.0 |
40 | 34.8 | 33.6 | 34.9 | 34.8 | 34.5 |
50 | 21.0 | 23.1 | 22.6 | 22.8 | 22.4 |
60 | 15.6 | 16.2 | 16.0 | 15.8 | 15.9 |
70 | 12.6 | 11.7 | 11.8 | 12.0 | 12.0 |
80 | 9.0 | 9.3 | 9.1 | 9.1 | 9.1 |
90 | 7.2 | 7.8 | 7.6 | 7.6 | 7.6 |
DES8: ChCl:LacA:1.3-propanediol:Water (1:4:1:0.92) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 51.6 | 50.1 | 49.8 | 50.5 | 50.5 |
40 | 31.2 | 31.2 | 31.3 | 31.0 | 31.2 |
50 | 21.6 | 22.2 | 21.7 | 22.1 | 21.9 |
60 | 15.3 | 15.0 | 15.6 | 15.4 | 15.3 |
70 | 12.6 | 11.4 | 11.7 | 11.6 | 11.8 |
80 | 8.4 | 9.0 | 9.0 | 9.1 | 8.9 |
90 | 6.6 | 7.5 | 7.4 | 7.3 | 7.2 |
DES9: ChCl:LacA:1.3-propanediol:Water (1:5:1:0.91) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 46.2 | 44.4 | 44.2 | 44.6 | 44.9 |
40 | 28.8 | 28.2 | 28.2 | 27.9 | 28.3 |
50 | 19.8 | 21.6 | 20.4 | 20.2 | 20.5 |
60 | 15.6 | 14.4 | 14.8 | 14.7 | 14.9 |
70 | 12.0 | 11.4 | 11.1 | 10.7 | 11.3 |
80 | 11.4 | 10.8 | 10.8 | 10.5 | 10.9 |
90 | 9.6 | 9.6 | 8.9 | 8.8 | 9.2 |
DES10: ChCl:LacA:1.3-butanediol:Water (1:1:1:0.93) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 118.2 | 117.9 | 118.5 | x | x |
40 | 72.0 | 71.4 | 71.1 | x | x |
50 | 46.8 | 45.3 | 44.7 | 45.4 | 45.4 |
60 | 29.4 | 29.7 | 30.4 | 30.0 | 30.0 |
70 | 21.6 | 21.9 | 20.8 | 21.1 | 21.1 |
80 | 16.2 | 15.6 | 15.9 | 15.8 | 15.8 |
90 | 12.6 | 12.6 | 12.1 | 12.1 | 12.1 |
DES11: ChCl:LacA:1.3-butanediol:Water (1:2:1:0.92) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 86.4 | 86.1 | 85.8 | x | 86.1 |
40 | 52.8 | 51.9 | 51.1 | 51.9 | 51.9 |
50 | 33.0 | 32.7 | 33.1 | 32.8 | 32.9 |
60 | 22.8 | 22.5 | 21.9 | 22.2 | 22.4 |
70 | 16.2 | 15.6 | 16.0 | 15.7 | 15.9 |
80 | 12.0 | 12.0 | 11.8 | 11.9 | 11.9 |
90 | 9.6 | 10.5 | 9.9 | 10.1 | 10.0 |
DES12: ChCl:LacA:1.3-butanediol:Water (1:3:1:1) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 72.6 | 71.7 | 71.4 | x | 71.9 |
40 | 43.2 | 42.0 | 42.7 | 42.8 | 42.7 |
50 | 25.8 | 27.3 | 27.4 | 27.2 | 26.9 |
60 | 19.2 | 18.6 | 18.1 | 18.3 | 18.6 |
70 | 13.8 | 12.3 | 13.5 | 13.3 | 13.2 |
80 | 10.2 | 10.5 | 10.2 | 10.3 | 10.3 |
90 | 7.8 | 9.0 | 8.8 | 9.0 | 8.7 |
DES13: ChCl:LacA:1.3-butanediol:Water (1:4:1:1) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 63.6 | 63.0 | 62.4 | x | 63.0 |
40 | 38.4 | 38.1 | 38.5 | 38.5 | 38.4 |
50 | 23.4 | 24.9 | 24.3 | 24.5 | 24.3 |
60 | 17.4 | 16.2 | 16.8 | 16.5 | 16.7 |
70 | 12.0 | 12.3 | 12.1 | 12.1 | 12.1 |
80 | 9.6 | 9.6 | 9.4 | 9.4 | 9.5 |
90 | 6.6 | 7.2 | 7.1 | 7.4 | 7.1 |
DES14: ChCl:LacA:1.3-butanediol:Water (1:5:1:1) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 63.6 | 60.9 | 60 | 59.9 | 61.1 |
40 | 38.4 | 36.7 | 36.3 | 35.9 | 36.8 |
50 | 24.6 | 26.1 | 24.0 | 23.7 | 24.6 |
60 | 19.8 | 17.7 | 16.8 | 16.6 | 17.7 |
70 | 13.8 | 12.6 | 12.7 | 12.3 | 12.9 |
80 | 10.2 | 10.5 | 9.0 | 9.1 | 9.7 |
90 | 8.4 | 8.4 | 8.4 | 8.5 | 8.4 |
DES15: ChCl:LacA:1.4-butanediol:Water (1:1:1:0.96) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 107.4 | 105.9 | 106.9 | x | 106.7 |
40 | 69.6 | 68.7 | 68.2 | x | 68.8 |
50 | 45.0 | 43.2 | 43.8 | 44.1 | 44.0 |
60 | 30.0 | 30.3 | 30.1 | 30.0 | 30.1 |
70 | 21.6 | 21.9 | 21.1 | 21.3 | 21.5 |
80 | 16.0 | 15.6 | 16.0 | 15.9 | 15.9 |
90 | 12.0 | 12.9 | 11.8 | 11.9 | 12.2 |
DES16: ChCl:LacA:1.4-butanediol:Water (1:2:1:0.92) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 77.4 | 77.1 | 76.8 | x | 77.1 |
40 | 48.0 | 46.5 | 46.5 | 47.1 | 47.0 |
50 | 30.6 | 30.0 | 30.6 | 30.5 | 30.4 |
60 | 21.3 | 21.3 | 21.0 | 21.1 | 21.2 |
70 | 16.2 | 14.7 | 15.4 | 15.2 | 15.4 |
80 | 13.2 | 12.0 | 12.3 | 12.2 | 12.4 |
90 | 9.0 | 9.9 | 9.3 | 9.7 | 9.5 |
DES17: ChCl:LacA:1.4-butanediol:Water (1:3:1:0.92) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 64.8 | 63.3 | 62.7 | x | 63.6 |
40 | 39.6 | 38.4 | 39.7 | 39.7 | 39.4 |
50 | 25.2 | 27.3 | 26.1 | 26.5 | 26.3 |
60 | 19.2 | 18.9 | 18.7 | 18.2 | 18.8 |
70 | 14.4 | 14.1 | 14.4 | 14.2 | 14.3 |
80 | 10.8 | 11.1 | 11.4 | 11.3 | 11.2 |
90 | 9.6 | 9.6 | 9.5 | 9.5 | 9.6 |
DES18: ChCl:LacA:1.4-butanediol:Water (1:4:1:0.91) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 57.0 | 56.1 | 54.6 | 55.2 | 55.7 |
40 | 34.2 | 33.0 | 34.0 | 33.7 | 33.7 |
50 | 21.6 | 23.1 | 22.0 | 22.1 | 22.2 |
60 | 15.0 | 15.0 | 15.6 | 15.3 | 15.2 |
70 | 12.6 | 12.0 | 11.8 | 11.5 | 12.0 |
80 | 9.6 | 9.9 | 9.0 | 9.2 | 9.4 |
90 | 7.5 | 7.5 | 7.4 | 7.9 | 7.6 |
DES19: ChCl:LacA:1.4-butanediol:Water (1:5:1:0.91) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 52.8 | 50.7 | 50.1 | 50.5 | 51.0 |
40 | 31.2 | 31.5 | 31.5 | 31.3 | 31.4 |
50 | 21.0 | 21.3 | 20.2 | 20.3 | 20.7 |
60 | 14.4 | 14.4 | 14.5 | 14.2 | 14.4 |
70 | 10.8 | 10.5 | 10.4 | 10.3 | 10.5 |
80 | 7.2 | 8.1 | 8.1 | 8.2 | 7.9 |
90 | 6.6 | 6.6 | 6.5 | 6.7 | 6.6 |
DES20: ChCl:LacA:1.5-pentanediol:Water (1:1:1:0.87) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 107.4 | 108.6 | 109.3 | x | 108.4 |
40 | 69.0 | 68.7 | 68.4 | x | 68.7 |
50 | 45.0 | 43.0 | 43.9 | 44.3 | 44.1 |
60 | 28.8 | 30.0 | 30.4 | 30.1 | 29.8 |
70 | 21.0 | 21.6 | 21.3 | 21.5 | 21.4 |
80 | 16.2 | 15.9 | 16.2 | 16.0 | 16.1 |
90 | 12.6 | 12.3 | 12.6 | 12.4 | 12.5 |
DES21: ChCl:LacA:1.5-pentanediol:Water (1:2:1:0.98) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 81.6 | 79.2 | 79.3 | x | 80.0 |
40 | 51.6 | 48.6 | 48.3 | 49.1 | 49.4 |
50 | 31.2 | 31.5 | 31.8 | 31.7 | 31.6 |
60 | 21.6 | 22.8 | 22.2 | 22.4 | 22.3 |
70 | 15.0 | 15.5 | 16.5 | 15.9 | 15.7 |
80 | 12.0 | 12.3 | 12.4 | 12.2 | 12.2 |
90 | 9.0 | 10.2 | 9.3 | 9.7 | 9.6 |
DES22: ChCl:LacA:1.5-pentanediol:Water (1:3:1:0.90) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 76.2 | 74.7 | 74.2 | x | 75.0 |
40 | 47.4 | 44.7 | 44.5 | 44.9 | 45.4 |
50 | 28.8 | 29.4 | 29.1 | 28.7 | 29.0 |
60 | 19.2 | 19.8 | 19.3 | 19.5 | 19.5 |
70 | 14.4 | 13.8 | 14.5 | 14.1 | 14.2 |
80 | 10.8 | 11.1 | 10.6 | 10.5 | 10.8 |
90 | 7.8 | 8.7 | 7.9 | 8.3 | 8.2 |
DES23: ChCl:LacA:1.5-pentanediol:Water (1:4:1:0.90) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 61.8 | 61.8 | 61.6 | x | 61.7 |
40 | 37.2 | 37.2 | 37.9 | 37.9 | 37.6 |
50 | 25.2 | 26.1 | 25.6 | 25.9 | 25.7 |
60 | 18.6 | 17.7 | 18.0 | 17.7 | 18.0 |
70 | 13.2 | 13.2 | 12.9 | 12.9 | 13.1 |
80 | 10.8 | 10.5 | 9.8 | 9.8 | 10.2 |
90 | 8.4 | 8.4 | 8.4 | 8.4 | 8.4 |
DES24: ChCl:LacA:1.5-pentanediol:Water (1:5:1:0.96) | |||||
Temperature (°C) | Viscosity (mPa s) | Average Viscosity (mPa·s) | |||
5 rpm | 10 rpm | 20 rpm | 50 rpm | ||
30 | 55.8 | 54.9 | 53.8 | 54.9 | 54.9 |
40 | 32.7 | 32.7 | 33.6 | 33.3 | 33.1 |
50 | 21.6 | 22.5 | 21.4 | 21.8 | 21.8 |
60 | 15.0 | 14.8 | 15.2 | 15.4 | 15.1 |
70 | 10.8 | 11.1 | 11.2 | 11.2 | 11.1 |
80 | 7.8 | 9.0 | 8.8 | 9.0 | 8.7 |
90 | 6.6 | 6.9 | 7.1 | 7.0 | 6.9 |
Sample | TPC (mg GAE/100 g Extract) | TPC (mg GAE/100 g Dry Bark) |
---|---|---|
DES1 | 15.7 ± 0.1 | 393.6 ± 3.0 |
DES2 | 13.9 ± 0.3 | 336.9 ± 6.5 |
DES3 | 12.8 ± 0.2 | 326.7 ± 3.0 |
DES4 | 13.4 ± 0.1 | 349.4 ± 2.6 |
DES5 | 11.6 ± 0.2 | 288.1 ± 2.5 |
DES6 | 13.8 ± 0.4 | 336.5 ± 8.7 |
DES7 | 12.0 ± 0.3 | 312.3 ± 7.3 |
DES8 | 14.0 ± 0.1 | 361.6 ± 2.2 |
DES9 | 13.8 ± 0.1 | 343.8 ± 2.1 |
DES10 | 9.4 ± 0.1 | 233.6 ± 1.8 |
DES11 | 10.9 ± 0.4 | 287.6 ± 8.5 |
DES12 | 11.6 ± 0.1 | 277.6 ± 2.1 |
DES13 | 20.9 ± 0.2 | 531.4 ± 3.9 |
DES14 | 23.4 ± 0.3 | 596.2 ± 7.4 |
DES15 | 12.1 ± 0.1 | 283.6 ± 2.0 |
DES16 | 13.4 ± 0.1 | 331.7 ± 2.5 |
DES17 | 12.3 ± 0.3 | 313.3 ± 7.4 |
DES18 | 13.7 ± 0.2 | 337.9 ± 3.9 |
DES19 | 12.6 ± 0.1 | 339.1 ± 1.8 |
DES20 | 13.7 ± 0.1 | 332.6 ± 2.1 |
DES21 | 14.3 ± 0.1 | 350.4 ± 3.0 |
DES22 | 14.6 ± 0.2 | 363.9 ± 2.8 |
DES23 | 11.3 ± 0.2 | 291.8 ± 5.1 |
DES24 | 16.0 ± 0.1 | 422.4 ± 2.4 |
Sample | RSA (%) | ||||||
---|---|---|---|---|---|---|---|
Time (min) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
DES1 | 76.2 | 78.6 | 81.0 | 82.7 | 84.3 | 85.4 | 86.4 |
DES2 | 83.3 | 86.2 | 88.2 | 89.8 | 90.9 | 92.2 | 93.2 |
DES3 | 85.9 | 88.0 | 89.5 | 90.8 | 91.7 | 92.5 | 93.2 |
DES4 | 83.7 | 86.2 | 88.1 | 89.6 | 90.6 | 91.5 | 92.3 |
DES5 | 72.0 | 74.6 | 76.8 | 78.5 | 79.9 | 81.3 | 82.4 |
DES6 | 81.4 | 84.3 | 86.2 | 87.9 | 89.3 | 90.4 | 91.3 |
DES7 | 85.2 | 87.9 | 89.7 | 91.3 | 91.7 | 93.1 | 93.8 |
DES8 | 86.2 | 88.7 | 90.6 | 91.9 | 92.8 | 93.4 | 94.1 |
DES9 | 86.6 | 89.4 | 91.1 | 92.5 | 93.4 | 94.0 | 94.6 |
DES10 | 69.0 | 74.7 | 78.0 | 80.2 | 81.8 | 83.1 | 84.2 |
DES11 | 70.6 | 76.6 | 80.0 | 82.3 | 84.3 | 85.6 | 86.9 |
DES12 | 74.7 | 81.7 | 85.0 | 87.6 | 89.4 | 90.5 | 91.7 |
DES13 | 75.7 | 82.7 | 86.4 | 89.0 | 90.6 | 91.8 | 92.6 |
DES14 | 80.8 | 87.9 | 91.0 | 92.8 | 93.8 | 94.5 | 95.0 |
DES15 | 70.0 | 75.5 | 78.8 | 81.1 | 82.8 | 84.3 | 85.4 |
DES16 | 76.6 | 82.9 | 86.3 | 88.5 | 90.2 | 91.3 | 92.3 |
DES17 | 76.0 | 82.5 | 86.0 | 88.3 | 89.8 | 91.1 | 92.1 |
DES18 | 78.7 | 85.1 | 88.5 | 90.6 | 92.1 | 93.1 | 93.8 |
DES19 | 77.1 | 84.3 | 87.5 | 91.2 | 92.8 | 93.4 | 94.1 |
DES20 | 71.5 | 74.0 | 75.7 | 77.5 | 78.9 | 80.1 | 81.4 |
DES21 | 78.9 | 81.8 | 83.8 | 85.4 | 86.9 | 88.0 | 88.8 |
DES22 | 79.4 | 82.2 | 84.3 | 86.0 | 87.5 | 88.5 | 89.7 |
DES23 | 82.6 | 89.0 | 92.0 | 93.4 | 94.2 | 94.7 | 94.9 |
DES24 | 74.3 | 80.1 | 83.5 | 85.8 | 87.5 | 88.8 | 89.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jablonsky, M.; Majova, V.; Strizincova, P.; Sima, J.; Jablonsky, J. Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals 2020, 10, 402. https://doi.org/10.3390/cryst10050402
Jablonsky M, Majova V, Strizincova P, Sima J, Jablonsky J. Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals. 2020; 10(5):402. https://doi.org/10.3390/cryst10050402
Chicago/Turabian StyleJablonsky, Michal, Veronika Majova, Petra Strizincova, Jozef Sima, and Jozef Jablonsky. 2020. "Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents" Crystals 10, no. 5: 402. https://doi.org/10.3390/cryst10050402
APA StyleJablonsky, M., Majova, V., Strizincova, P., Sima, J., & Jablonsky, J. (2020). Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. Crystals, 10(5), 402. https://doi.org/10.3390/cryst10050402