Ultrahigh Electromechanical Coupling and Its Thermal Stability in (Na1/2Bi1/2)TiO3-Based Lead-Free Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsu, H.S.; Benjauthrit, V.; Zheng, F.; Chen, R.; Huang, Y.; Zhou, Q.; Shung, K.K. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications. Sensor Actuat. A Phys. 2012, 179, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Near, C.; Gentilman, R.; Pazol, B.; Fiore, D.; Serwatka, W.; Guyen, H.P.; Markowski, K.; Mcguire, P.; Bowen, L. Application of piezoelectric composites and net: Hape PZT ceramics as acoustic sensors and actuators. J. Acoust. Soc. Am. 1998, 101, 221–229. [Google Scholar] [CrossRef]
- Rathod, V.T. A Review of Electric Impedance Matching Techniques for Piezoelectric Sensors, Actuators and Transducers. Electronics 2019, 8, 169. [Google Scholar]
- Roedel, J. ChemInform Abstract: Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications-Status and Perspective. J. Electroceram. 2012, 29, 71–93. [Google Scholar]
- Rodel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.M.; Damjanovic, D. Perspective on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Shuai, C.; Zhang, B.; Lei, Z.; Wang, K. Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: Analysis of Bi3+ volatilization and phase structures. J. Mater. Chem. C. 2018, 6, 3982–3989. [Google Scholar]
- Wang, X.; Wu, J.; Xiao, D.; Zhu, J.; Cheng, X.; Zheng, T.; Zhang, B.; Lou, X.; Wang, X. Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics. J. Am. Chem. Soc. 2014, 136, 2905–2910. [Google Scholar]
- Kakimoto, K.I.; Akao, K.; Guo, Y.; Ohsato, H. Raman Scattering Study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 Ceramics. Jpn. J. Appl. Phys. 2005, 44, 7064–7067. [Google Scholar] [CrossRef]
- Takenaka, T.; Maruyama, K.I.; Sakata, K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 1991, 30, 2236–2239. [Google Scholar] [CrossRef]
- Cheng, M.; Guo, H.; Beckman, S.P.; Tan, X. Creation and Destruction of Morphotropic Phase Boundaries through Electrical Poling: A Case Study of Lead-Free (Bi1/2Na1/2)TiO3-BaTiO3 Piezoelectrics. Phys. Rev. Lett. 2012, 109, 107601–107602. [Google Scholar]
- Ahart, M.; Somayazulu, M.; Cohen, R.E.; Ganesh, P.; Dera, P.; Mao, H.K.; Hemley, R.J.; Ren, Y.; Liermann, P.; Wu, Z. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008, 451, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.E.; Jo, W.; Rödel, J.; Jones, J.L. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 piezoelectric ceramic. Appl. Phys. Lett. 2014. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Luo, C.; Zhang, Q.; Devreugd, C.P.; Ren, Y.; Li, J.; Luo, H.; Viehland, D. Ultrahigh electromechanical response in (1-x)(Na0.5)Bi0.5)TiO3-xBaTiO3 single-crystals via polarization extension. J.Appl. Phys. 2012, 111, 93501–93508. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Luo, C.; Wang, S.; Chen, C.; Yuan, G.; Luo, H.; Viehland, D. Large Piezoelectricity in Ternary Lead-Free Single Crystals. Adv. Electron. Mater. 2020, 6, 1900949. [Google Scholar]
- Peng, J.; Luo, H.; He, T.; Xu, H.; Lin, D. Elastic, dielectric, and piezoelectric characterization of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystals. Mater. Lett. 2005, 59, 640–643. [Google Scholar] [CrossRef]
- Yao, F.Z.; Wang, K.; Li, J.F. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO_3 lead-free piezoceramics. J. Appl. Phys. 2013, 113, 174101–174105. [Google Scholar] [CrossRef]
- Huo, X.; Zheng, L.; Zhang, R.; Wang, R.; Wang, J. A high quality lead-free (Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4mm symmetry. Crystengcomm 2014. [Google Scholar] [CrossRef]
- Huo, X.; Zhang, R.; Zheng, L.; Zhang, S.; Cao, W. (K, Na, Li)(Nb, Ta)O3:Mn Lead-Free Single Crystal with High Piezoelectric Properties. J. Am. Ceram Soc. 2015, 98, 1829–1835. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Lam, K.H.; Chen, Y.; Zhang, Q.; Chiu, Y.C.; Luo, H.; Dai, J.; Chan, H.L.W. Lead-free piezoelectric single crystal based 1-3 composites for ultrasonic transducer applications. Sensor. Actuat. A Phys. 2012, 182, 95–100. [Google Scholar]
- Zheng, L.; Yi, X.; Zhang, S.; Jiang, W.; Yang, B.; Zhang, R.; Cao, W. Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3-0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions. Appl. Phys. Lett. 2013, 103, 122905. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Tan, X.; Kleebe, H.J. In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 Ceramics. J. Am. Ceram. Soc. 2011, 94, 4040–4044. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.; Zhang, H.; Hao, D.; Huang, T.; Li, X.; Zhao, X.; Hu, Z.; Dong, W.; Luo, H. Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.O at.%BaTiO3 single crystals investigated by micro-Raman scattering. Appl. Phys. Lett. 2014, 104, 142901–142902. [Google Scholar]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta. Crystallographica 1972, 28, 3384–3392. [Google Scholar] [CrossRef]
- Kreisel, J.; Glazer, A.M.; Jones, G.; Thomas, P.A.; Abello, L.; Lucazeau, G. An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3 (0 <x <1) solid solution. J. Phys. Condens. Matter 2000, 12, 3267. [Google Scholar]
- Maurya, D.; Pramanick, A.; Feygenson, M.; Neuefeind, J.C.; Priya, S. Effect of poling on nanodomains and nanoscale structure in A-site disordered lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3. J. Mater. Chem. C. 2014, 2. [Google Scholar] [CrossRef]
- Ge, W.; Hu, C.; Devreugd, C.; Li, J.; Viehl, D. Influence of BaTiO3 Content on the Structure and Properties of Na0.5Bi0.5TiO3 Crystals. J. Am. Ceram. Soc. 2011, 94, 3084–3087. [Google Scholar] [CrossRef]
- Yao, J.; Li, Y.; Ge, W.; Liang, L.; Li, J.; Viehland, D.; Zhang, Q.; Luo, H. Evolution of domain structures in Na1/2Bi1/2TiO3 single crystals with BaTiO3. Phys. Rev. B. 2011, 83, 54101–54107. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, G.A.; Khachaturyan, A.G.; Akcay, G.; Ni, Y. Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys. 2008, 103, 114113. [Google Scholar] [CrossRef]
- Schoenau, K.A.; Schmitt, L.A.; Fuess, H.; Knapp, M.; Hoffmann, M.J. Nanodomain Structure of Pb(Zr1-xTix)O3 at Its Morphotropic Phase Boundary: Investigations From Local to Average Structure. Phys. Rev. B 2007, 75, 184117. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Li, J.; Viehland, D. Domain hierarchy in annealed (001)-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3 single crystals. Appl. Phys. Lett. 2004, 85, 2313–2315. [Google Scholar] [CrossRef] [Green Version]
- Wada, S.; Kakemoto, H.; Tsurumi, T. Enhanced Piezoelectric Properties of Piezoelectric Single Crystals by Domain Engineering. Mater. Trans. 2004, 45, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Wada, S.; Tsurumi, T. Enhanced piezoelectricity of barium titanate single crystals with engineered domain configuration. Brit. Ceram. Trans. 2004, 103, 93–96. [Google Scholar]
- Yako, K.; Kakemoto, H.; Tsurumi, T.; Wada, S. Enhanced Piezoelectric Properties of Barium Titanate Single Crystals by Domain Engineering. Key Eng. Mater. 2006, 301, 23–26. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Yang, L.; Jiang, X.; Huang, X.; Gao, X.; Tu, N.; Shu, K.; Jiang, X.; Zhang, S.; Luo, H. Ultrahigh Electromechanical Coupling and Its Thermal Stability in (Na1/2Bi1/2)TiO3-Based Lead-Free Single Crystals. Crystals 2020, 10, 435. https://doi.org/10.3390/cryst10060435
Chen C, Yang L, Jiang X, Huang X, Gao X, Tu N, Shu K, Jiang X, Zhang S, Luo H. Ultrahigh Electromechanical Coupling and Its Thermal Stability in (Na1/2Bi1/2)TiO3-Based Lead-Free Single Crystals. Crystals. 2020; 10(6):435. https://doi.org/10.3390/cryst10060435
Chicago/Turabian StyleChen, Chao, Li Yang, Xingan Jiang, Xiaokun Huang, Xiaoyi Gao, Na Tu, Kaizheng Shu, Xiangping Jiang, Shujun Zhang, and Haosu Luo. 2020. "Ultrahigh Electromechanical Coupling and Its Thermal Stability in (Na1/2Bi1/2)TiO3-Based Lead-Free Single Crystals" Crystals 10, no. 6: 435. https://doi.org/10.3390/cryst10060435
APA StyleChen, C., Yang, L., Jiang, X., Huang, X., Gao, X., Tu, N., Shu, K., Jiang, X., Zhang, S., & Luo, H. (2020). Ultrahigh Electromechanical Coupling and Its Thermal Stability in (Na1/2Bi1/2)TiO3-Based Lead-Free Single Crystals. Crystals, 10(6), 435. https://doi.org/10.3390/cryst10060435