Study of Bond Strength of Steel Bars in Basalt Fibre Reinforced High Performance Concrete
Abstract
:1. Introduction
2. Research Significance
3. Materials and Methods
4. Results and Discussion
4.1. Hardened State Properties
4.2. Bond Strength Versus Fibre Content Relationship
4.3. Bond Strength Versus Splitting Tensile Strength Relationship
4.4. Bond Strength Versus Ratio of Concrete Cover to Bar Diameter Relationship
5. Conclusions
- The compressive strength of HPC worsened with increasing basalt fibres volume fraction. The compressive strength ranged from 15% to 22% lower for the fractions from 1% to 2%.
- The splitting tensile strength and flexural strength of BFRHPC significantly improved with the addition of basalt fibres at various volume contents. The splitting tensile and flexural strength showed a maximum at 1.5% fibre content but slight decreases at 1.75% and 2% contents, compared to 1.5% still remaining 23% and 20% higher, as well as 92% and 103% higher than before the fibre’s addition.
- Changes in basalt fibre content between 1% and 2% resulted in differences between 7% and 74% in the bond strength achieved. Similar differences in bond strength were observed after normalization, suggesting that the bond strength depends more on the quantity of fibres available to bridge any cracks forming under load, rather than the differences in compressive strength of BFRHPC.
- The bond strength for the same bar diameter and fibre volume content improved from 3% to 40% with a two-fold concrete cover, suggesting that the bond strength is dependent on the fibre orientation in the concrete cover area.
- The relationships obtained for BFRHPC predict the bond strengths accurately.
Funding
Acknowledgments
Conflicts of Interest
References
- Sivakumar, A.; Santhanam, M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem. Concr. Compos. 2007, 29, 603–608. [Google Scholar] [CrossRef]
- Smarzewski, P. Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings. Appl. Sci. 2018, 8, 2070. [Google Scholar] [CrossRef] [Green Version]
- Smarzewski, P. Analysis of Failure Mechanics in Hybrid Fibre-Reinforced High-Performance Concrete Deep Beams with and without Openings. Materials 2019, 12, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smarzewski, P. Processes of Cracking and Crushing in Hybrid Fibre Reinforced High-Performance Concrete Slabs. Processes 2019, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015, 94, 73–82. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Job, T.; Ramaswamy, A. Mechanical properties of steel fiber-reinforced concrete. J. Mater. Civ. Eng. 2007, 19, 385–392. [Google Scholar]
- Ramezanianpour, A.A.; Ghahari, S.A.; Khazaei, A. Feasibility Study on Production and Sustainability of Poly Propylene Fiber Reinforced Concrete Ties Based on a Value Engineering Survey. In Proceedings of the Third International Conference on Sustainable Construction Materials and Technologies (SCMT3’13), Kyoto, Japan, 18–21 August 2013; pp. 1–8. [Google Scholar]
- Shah, A.A.; Ribakov, Y. Recent trends in steel fibered high-strength concrete. Mater. Des. 2011, 32, 4122–4151. [Google Scholar] [CrossRef]
- Feng, J.; Sun, W.; Zhai, H.; Wang, L.; Dong, H.; Wu, Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials 2018, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- High, C.; Seliem, H.M.; Adel El-Safty, A.; Rizkalla, S.H. Use of basalt fibers for concrete structures. Constr. Build. Mater. 2015, 96, 37–46. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C. Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 2016, 124, 878–886. [Google Scholar] [CrossRef]
- Dias, D.P.; Thaumaturgo, C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005, 27, 49–54. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Iyer, P.; Kenno, S.Y.; Das, S. Mechanical properties of fiber-reinforced concrete made with basalt filament fibers. J. Mater. Civ. Eng. 2015, 11, 04015015. [Google Scholar] [CrossRef]
- Lipatov, Y.V.; Gutnikov, S.; Manylov, M.; Zhukovskaya, E.; Lazoryak, B. High alkali-resistant basalt fiber for reinforcing concrete. Mater. Des. 2015, 73, 60–66. [Google Scholar] [CrossRef]
- Smarzewski, P. Flexural Toughness of High-Performance Concrete with Basalt and Polypropylene Short Fibres. Adv. Civ. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Smarzewski, P. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete. Compos. Struct. 2019, 209, 23–33. [Google Scholar] [CrossRef]
- Smarzewski, P. Flexural toughness evaluation of basalt fibre reinforced HPC beams with and without initial notch. Compos. Struct. 2020, 235, 111769. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Shin, H.; Yang, J.-M.; Yoon, Y.-S. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos. Part B Eng. 2014, 58, 122–133. [Google Scholar] [CrossRef]
- Smarzewski, P.; Barnat-Hunek, D. Fracture properties of plain and steel-polypropylene-fiber-reinforced high-performance concrete. Mater. Tehnol. 2015, 49, 563–571. [Google Scholar] [CrossRef]
- Smarzewski, P. Effect of Curing Period on Properties of Steel and Polypropylene Fibre Reinforced Ultra-High Performance Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 32059. [Google Scholar] [CrossRef]
- Smarzewski, P. Study of Toughness and Macro/Micro-Crack Development of Fibre-Reinforced Ultra-High Performance Concrete After Exposure to Elevated Temperature. Materials 2019, 12, 1210. [Google Scholar] [CrossRef] [Green Version]
- Fehling, E.; Lorenz, P.; Leutbeche, T. Experimental Investigations on Anchorage of Rebars in UHPC. In Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 7–9 March 2012. [Google Scholar]
- Tepfers, R. A Theory of Bond Applied to Overlapped Tensile Reinforcement Splices of Deformed Bars; Report 73-2; Chalmers University of Technology: Göteborg, Sweden, 1973. [Google Scholar]
- Soretz, S.; Holzenbein, H. Influence of Rib Dimensions of Reinforcing Bars on Bond and Bendability. ACI J. 1979, 76, 111–126. [Google Scholar]
- Darwin, D.; Graham, E.K. Effect of Deformation Height Spacing on Bond Strength of Reinforcing Bars. ACI Struct. J. 1993, 90, 646–657. [Google Scholar]
- Hwang, S.J.; Lee, Y.Y.; Lee, C.S. Effect of Silica Fume Splice Strength of Deformed Bars of High-Performance Concrete. ACI Struct. J. 1994, 91, 294–302. [Google Scholar]
- Tepfers, R. Bond stress along lapped reinforcing bars. Mag. Concr. Res. 1980, 32, 135–142. [Google Scholar] [CrossRef]
- Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete (HSC). ACI Struct. J. 1998, 95, 96–106. [CrossRef]
- Holschemacher, K.; Weiße, D.; Klotz, S. Bond of Reinforcement in Ultra High Strength Concrete. In Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, Germany, 13–15 September 2004. [Google Scholar]
- Eligehausen, R.; Mallée, R.; Silva, J.F. Anchorage in Concrete Construction; Ernst&Sohn: Berlin, Germany, 2006. [Google Scholar]
- Alkaysi, M.; El-Tawil, S. Factors affecting bond development between Ultra High Performance Concrete (UHPC) and steel bar reinforcement. Constr. Build. Mater. 2017, 144, 412–422. [Google Scholar] [CrossRef]
- Wang, D.; Ju, Y.; Shen, H.; Xu, L. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr. Build. Mater. 2019, 197, 464–473. [Google Scholar] [CrossRef]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Çelik, Z.; Bingöl, A.F. Mechanical properties and postcracking behavior of self-compacting fiber reinforced concrete. Struct. Concr. 2019, 1–10. [Google Scholar] [CrossRef]
- Wu, Z.; Khayat, K.H.; Shi, C. How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cem. Concr. Compos. 2018, 90. [Google Scholar] [CrossRef] [Green Version]
- Harajli, M.; Hamad, B.; Karam, K. Bond-slip response of reinforcing bars embedded in plain and fiber concrete. J. Mater. Civ. Eng. 2002, 14, 503–511. [Google Scholar] [CrossRef]
Composition (%) | Cement | Silica Fume |
---|---|---|
SiO2 | 19.99 | 85.0 |
Al2O3 | 4.19 | - |
Fe2O3 | 3.76 | - |
CaO | 64.82 | 1.0 |
MgO | 1.14 | - |
SO3 | 3.25 | 2.0 |
K2O | 0.46 | - |
Na2O | 0.24 | 3.0 |
Cl | 0.07 | 0.3 |
Si | - | 0.4 |
Loss on ignition | 3.01 | 4.0 |
Insoluble matter | 0.18 | - |
Specific surface area (cm2/g) | 4839 | 150,000 |
Water demand (%) | 30 | - |
Start of setting (min) | 160 | - |
End of setting (min) | 210 | - |
Compressive strength at 2 days (MPa) | 40.3 | - |
Tensile strength at 2 days (MPa) | 6.5 | - |
Designation | C (kg/m3) | SF (kg/m3) | CA (kg/m3) | FA (kg/m3) | W (L/m3) | Sp (L/m3) | BF | |
---|---|---|---|---|---|---|---|---|
(kg/m3) | (%) | |||||||
HPC–B0 | 670.5 | 74.5 | 990 | 500 | 210 | 20 | 0 | 0 |
HPC–B1 | 670.5 | 74.5 | 990 | 473 | 210 | 20 | 27 | 1 |
HPC–B1.25 | 670.5 | 74.5 | 990 | 466.25 | 210 | 20 | 33.75 | 1.25 |
HPC–B1.5 | 670.5 | 74.5 | 990 | 459.5 | 210 | 20 | 40.5 | 1.5 |
HPC–B1.75 | 670.5 | 74.5 | 990 | 452.75 | 210 | 20 | 47.25 | 1.75 |
HPC–B2 | 670.5 | 74.5 | 990 | 446 | 210 | 20 | 54 | 2 |
Bar Diameter ϕb (mm) | Bottom Concrete Cover, cy (mm) | Side Concrete Cover, cx (mm) | Embedded Length, le (mm) | cy/ϕb | Number of Specimens |
---|---|---|---|---|---|
12 | 94 | 94 | 60 | 7.83 | 18 |
12 | 44 | 94 | 60 | 3.67 | 18 |
16 | 92 | 92 | 80 | 5.75 | 18 |
16 | 42 | 92 | 80 | 2.63 | 18 |
Property | HPC–B0 | HPC–B1 | HPC–B1.25 | HPC–B1.5 | HPC–B1.75 | HPC–2 |
---|---|---|---|---|---|---|
Compressive strength (MPa) | 135.5 | 112.1 | 112.3 | 116.4 | 111.1 | 105.3 |
SD (MPa) | 1.85 | 1.31 | 1.31 | 1.17 | 1.38 | 1.21 |
CV (%) | 1.36 | 1.17 | 1.17 | 1.00 | 1.24 | 1.15 |
Ratio | 1.00 | 0.83 | 0.83 | 0.85 | 0.82 | 0.78 |
Splitting tensile strength (MPa) | 6.4 | 8.0 | 9.0 | 9.6 | 7.9 | 7.7 |
SD (MPa) | 0.15 | 0.21 | 0.29 | 0.19 | 0.11 | 0.23 |
CV (%) | 2.34 | 2.62 | 3.22 | 1.98 | 1.39 | 2.99 |
Ratio | 1.00 | 1.25 | 1.41 | 1.50 | 1.23 | 1.20 |
Flexural strength (MPa) | 6.0 | 10.1 | 10.8 | 12.4 | 11.5 | 12.2 |
SD (MPa) | 0.15 | 0.23 | 0.39 | 0.29 | 0.21 | 0.33 |
CV (%) | 2.50 | 2.28 | 3.61 | 2.34 | 1.83 | 2.70 |
Ratio | 1.00 | 1.68 | 1.80 | 2.07 | 1.92 | 2.03 |
Designation | Vf (%) | fc (MPa) | ϕb (mm) | le (mm) | cy (mm) | cx (mm) | Fmax (kN) | τb (MPa) | δm (mm) | τb* (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
HPC–B0 | 0 | 135.5 | 12 | 60 | 94 | 94 | 26.01 | 11.5 | 1.66 | 0.99 |
44 | 94 | 23.07 | 10.2 | 2.16 | 0.88 | |||||
16 | 80 | 92 | 92 | 61.12 | 15.2 | 3.77 | 1.31 | |||
42 | 92 | 52.28 | 13.0 | 3.58 | 1.12 | |||||
HPC–B1 | 1.0 | 112.1 | 12 | 60 | 94 | 94 | 26.69 | 11.8 | 3.52 | 1.11 |
44 | 94 | 26.01 | 11.5 | 4.47 | 1.09 | |||||
16 | 80 | 92 | 92 | 49.46 | 12.3 | 4.53 | 1.16 | |||
42 | 92 | 45.44 | 11.3 | 5.67 | 1.07 | |||||
HPC–B1.25 | 1.25 | 112.3 | 12 | 60 | 94 | 94 | 29.41 | 13.0 | 5.90 | 1.23 |
44 | 94 | 28.05 | 12.4 | 6.56 | 1.17 | |||||
16 | 80 | 92 | 92 | 50.27 | 12.5 | 5.62 | 1.18 | |||
42 | 92 | 44.64 | 11.1 | 5.25 | 1.05 | |||||
HPC–B1.5 | 1.5 | 116.4 | 12 | 60 | 94 | 94 | 34.38 | 15.2 | 5.95 | 1.41 |
44 | 94 | 29.18 | 12.9 | 8.33 | 1.20 | |||||
16 | 80 | 92 | 92 | 53.48 | 13.3 | 6.77 | 1.23 | |||
42 | 92 | 45.44 | 11.3 | 6.31 | 1.05 | |||||
HPC–B1.75 | 1.75 | 111.1 | 12 | 60 | 94 | 94 | 40.49 | 17.9 | 5.99 | 1.70 |
44 | 94 | 30.31 | 13.4 | 7.32 | 1.27 | |||||
16 | 80 | 92 | 92 | 57.50 | 14.3 | 5.69 | 1.36 | |||
42 | 92 | 48.25 | 12.0 | 6.72 | 1.14 | |||||
HPC–B2 | 2.0 | 105.3 | 12 | 60 | 94 | 94 | 46.37 | 20.5 | 6.23 | 2.00 |
44 | 94 | 33.02 | 14.6 | 4.24 | 1.42 | |||||
16 | 80 | 92 | 92 | 63.54 | 15.8 | 7.89 | 1.54 | |||
42 | 92 | 48.66 | 12.1 | 6.73 | 1.18 |
Designation | Equation | Reduced Chi-Square | Adj. R-Square |
---|---|---|---|
HPC–B1 | 0.165 | 0.420 | |
HPC–B1.25 | 0.239 | 0.749 | |
HPC–B1.5 | 0.310 | 0.920 | |
HPC–B1.75 | 0.611 | 0.937 | |
HPC–B2 | 1.060 | 0.971 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smarzewski, P. Study of Bond Strength of Steel Bars in Basalt Fibre Reinforced High Performance Concrete. Crystals 2020, 10, 436. https://doi.org/10.3390/cryst10060436
Smarzewski P. Study of Bond Strength of Steel Bars in Basalt Fibre Reinforced High Performance Concrete. Crystals. 2020; 10(6):436. https://doi.org/10.3390/cryst10060436
Chicago/Turabian StyleSmarzewski, Piotr. 2020. "Study of Bond Strength of Steel Bars in Basalt Fibre Reinforced High Performance Concrete" Crystals 10, no. 6: 436. https://doi.org/10.3390/cryst10060436
APA StyleSmarzewski, P. (2020). Study of Bond Strength of Steel Bars in Basalt Fibre Reinforced High Performance Concrete. Crystals, 10(6), 436. https://doi.org/10.3390/cryst10060436