Inhibition of the Alkali-Carbonate Reaction Using Fly Ash and the Underlying Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Mortar Bars Test
2.2.2. Concrete Microbars Test
2.2.3. Concrete Prisms Test
2.2.4. Measurement of the PH, Ionic Concentration and Pore Structure
2.2.5. Thin Section Petrography
3. Results and Discussion
3.1. Discrimination of the Aggregate Alkali Reactive
3.2. The Effect of Fly Ash on Concrete Microbars in the Short Term
3.2.1. Alkali Equivalent (Equivalent Na2Oeq) of the Cement Adjusted to 1.5%
3.2.2. Alkali Equivalent (Equivalent Na2Oeq) of the Cement Adjusted to 1.0%
3.3. The Effect of Fly Ash on Concrete Microbars in the Long-Term
3.4. The Mechanism of Fly Ash Inhibiting ACR
3.4.1. The Effect of Fly Ash on PH Value
3.4.2. The Effect of Fly Ash on the Ionic Migration and Pore Structure
3.4.3. Polarizing Microscope and Stereomicroscope Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stanton, T.E. Expansion of concrete through reaction between cement and aggregate. Proc. Asce 1940, 6, 1781–1811. [Google Scholar]
- Gillott, J.E. Mechanism and kinetics of expansion in the alkali-carbonate rock reaction. Can. J. Earth Sci. 1964, 1, 121–145. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Z.; Han, S. Mechanism of alkali-carbonate reaction. In Proceedings of the 7th ICAAR in Concrete, Ottawa, ON, Canada, 18–22 August 1986; pp. 275–279. [Google Scholar]
- Deng, M.; Mingshu, T. Mechanism of dedolomitization and expansion of dolomitic rocks. Cem. Concr. Res. 1993, 23, 1397–1408. [Google Scholar]
- Tong, L.; Tang, M. Expansion mechanism of alkali-dolomite and alkali-magnesite reaction. Cem. Concr. Compos. 1999, 21, 361–373. [Google Scholar] [CrossRef]
- Katayama, T.; Tagami, M.; Sarai, Y. Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan. Mater. Charact. 2004, 53, 105–122. [Google Scholar] [CrossRef]
- Katayama, T. How to identify carbonate rock reactions in concrete. Mater. Charact. 2004, 53, 85–104. [Google Scholar] [CrossRef]
- Katayama, T. The so-called alkali-carbonate reaction (ACR)—Its mineralogical and geochemical details, with special reference to ASR. Cem. Concr. Res. 2010, 40, 643–675. [Google Scholar] [CrossRef]
- Chen, X.; Yang, B.; Mao, Z. The expansion cracks of dolomitic aggregates cured in TMAH solution caused by alkali–carbonate reaction. Materials 2019, 12, 1228. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Deng, M.; Lan, X. Behaviors of reactive silica and dolomite in tetramethyl ammonium hydroxide solutions. In Proceedings of the 15th international conference on Alkali-aggregate reactions in concrete, St Paul, Brazil, 3–7 July 2016; pp. 3–7. [Google Scholar]
- Yuan, H.; Deng, M.; Chen, B. Expansion of dolomitic rocks in TMAH and NaOH solutions and its root causes. Materials 2020, 13, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I. Alkali–silica reactions (ASR): literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 2012, 42, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, Y.; Yamada, K. The mechanism of limited inhibition by fly ash on expansion due to alkali–silica reaction at the pessimum proportion. Cem. Concr. Res. 2017, 92, 1–15. [Google Scholar] [CrossRef]
- Thomas, M. The effect of supplementary cementing materials on alkali-silica reaction: A review. Cem. Concr. Res. 2011, 41, 1224–1231. [Google Scholar] [CrossRef]
- Joshaghani, A. The effect of trass and fly ash in minimizing alkali–carbonate reaction in concrete. Constr. Build. Mater. 2017, 150, 583–590. [Google Scholar] [CrossRef]
- Shehata, M.H.; Jagdat, S.; Rogers, C. Long-term effects of different cementing blends on alkali-carbonate reaction. Aci Mater. J. 2017, 114, 661–672. [Google Scholar] [CrossRef]
- Min, D.; Mingshu, T. Measures to inhibit alkali-dolomite reaction. Cem. Concr. Res. 1993, 23, 1115–1120. [Google Scholar] [CrossRef]
- AAR, R.R. Detection of potential alkali-reactivity of aggregates-The ultra-accelerated mortar-bar test. Mater. Struct. 2000, 33, 226. [Google Scholar]
- Sommer, H.; Nixon, P.J.; Sims, I. AAR–5: Rapid preliminary screening test for carbonate aggregates. Mater. Struct. 2005, 38, 787–792. [Google Scholar] [CrossRef]
- ASTM C1293–08: Standard Test Method for Determination of Length Change of Concrete Due To Alkali–Silica Reaction. Available online: https://books.google.com.hk/books?id=9ILMBQAAQBAJ&pg=PA8&lpg=PA8&dq=20.%09ASTM+C1293%E2%80%9308:+Standard+test+method+for+determination+of+length+change+of+concrete+due+to+alkali%E2%80%93silica+reaction.&source=bl&ots=VxAaWxR3Oj&sig=ACfU3U2hRlpMOExB6rYk5bs8pXWL_UuNrA&hl=en&sa=X&redir_esc=y&hl=zh-CN&sourceid=cndr#v=onepage&q=20.%09ASTM%20C1293%E2%80%9308%3A%20Standard%20test%20method%20for%20determination%20of%20length%20change%20of%20concrete%20due%20to%20alkali%E2%80%93silica%20reaction.&f=false (accessed on 4 June 2020).
- French, W.J. Concrete petrography: A review. Q. J. Eng. Geol. 1991, 24, 17–48. [Google Scholar] [CrossRef]
- Deng, M.; Tang, M.S. Mechanism and prevention of alkali-dolomite reaction. J. Nanjing Univ. Chem. Technol. 1998, 20, 1–7. [Google Scholar]
- Dunstan, E.R. The chemistry of alkali-aggregate reactions. Cem. Concr. Aggreg. 1981, 3, 101–104. [Google Scholar]
- Xu, G.; Tian, Q.; Miao, J. Early-age hydration and mechanical properties of high-volume slag and fly ash concrete at different curing temperatures. Constr. Build. Mater. 2017, 149, 367–377. [Google Scholar] [CrossRef]
- Mehta, P.K. Study on blended portland cements containing santirin earth. Cem. Concr. Res. 1981, 11, 507–518. [Google Scholar] [CrossRef]
Samples | Chemical Compositions (wt. %) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | MgO | Al2O3 | Fe2O3 | SO3 | K2O | Na2O | LOI | |
Cement (Type II) | 22.02 | 60.51 | 2.18 | 6.34 | 3.05 | 1.86 | 0.47 | 0.23 | 1.96 |
Fly Ash | 48.91 | 5.01 | 1.03 | 34.18 | 5.22 | 1.20 | 0.89 | 0.39 | 1.05 |
Samples | Chemical Compositions (wt. %) | |||||
---|---|---|---|---|---|---|
SiO2 | CaO | MgO | Al2O3 | Fe2O3 | LOI | |
BFL8 | 2.68 | 48.65 | 4.39 | 0.93 | 0.26 | 42.06 |
SJW | 7.68 | 42.68 | 5.21 | 1.26 | 0.88 | 38.64 |
Sample Name | w/c | Cement/g | Aggregates/g |
---|---|---|---|
BFL8-1 | 0.47 | 400 | 900 |
SJW-1 | 0.47 | 400 | 900 |
Sample Name | w/c | Cement/g | Fly Ash/g | Aggregates/g |
---|---|---|---|---|
BFL8-2-FA0% | 0.32 | 900 | 0 | 900 |
BFL8-2-FA10% | 0.32 | 810 | 90 | 900 |
BFL8-2-FA20% | 0.32 | 720 | 180 | 900 |
BFL8-2-FA30% | 0.32 | 630 | 270 | 900 |
SJW-2-FA0% | 0.32 | 900 | 0 | 900 |
SJW-2-FA10% | 0.32 | 810 | 90 | 900 |
SJW-2-FA20% | 0.32 | 720 | 180 | 900 |
SJW-2-FA30% | 0.32 | 630 | 270 | 900 |
Sample Name | w/c | Cement/g | Fly Ash/g | Aggregates/g | Sand/g |
---|---|---|---|---|---|
BFL8-3-FA0% | 0.45 | 3360 | 0 | 6000 | 3980 |
BFL8-3-FA30% | 0.45 | 2352 | 1008 | 6000 | 3980 |
SJW-3-FA0% | 0.45 | 3360 | 0 | 6000 | 3980 |
SJW-3-FA30% | 0.45 | 2352 | 1008 | 6000 | 3980 |
Sample Name | w/c | Cement/g | Fly Ash/g |
---|---|---|---|
FA-0% | 0.32 | 450 | 0 |
FA-10% | 0.32 | 405 | 45 |
FA-20% | 0.32 | 360 | 90 |
FA-30% | 0.32 | 315 | 135 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Li, W.; Mao, Z.; Deng, M. Inhibition of the Alkali-Carbonate Reaction Using Fly Ash and the Underlying Mechanism. Crystals 2020, 10, 484. https://doi.org/10.3390/cryst10060484
Ren X, Li W, Mao Z, Deng M. Inhibition of the Alkali-Carbonate Reaction Using Fly Ash and the Underlying Mechanism. Crystals. 2020; 10(6):484. https://doi.org/10.3390/cryst10060484
Chicago/Turabian StyleRen, Xin, Wei Li, Zhongyang Mao, and Min Deng. 2020. "Inhibition of the Alkali-Carbonate Reaction Using Fly Ash and the Underlying Mechanism" Crystals 10, no. 6: 484. https://doi.org/10.3390/cryst10060484
APA StyleRen, X., Li, W., Mao, Z., & Deng, M. (2020). Inhibition of the Alkali-Carbonate Reaction Using Fly Ash and the Underlying Mechanism. Crystals, 10(6), 484. https://doi.org/10.3390/cryst10060484