Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors
Abstract
:1. Introduction
2. Stanfieldite in the Brahin Pallasite
3. Materials and Methods
4. Results and Discussion
4.1. Stanfieldite: A Complete Structure-Composition Dataset
4.2. General Features of Stanfieldite Structure and Its Formula
4.3. The M5A Site, A Key to A Flexibility of Stanfieldite Composition
5. Ca3Mg3(PO4)4 Phosphors: Do They Exist?
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hystad, G.; Downs, R.T.; Grew, E.S.; Hazen, R.M. Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth Planet Sci. Lett. 2015, 426, 154–157. [Google Scholar] [CrossRef]
- Rubin, A.E.; Ma, C. Meteoritic minerals and their origins. Chem. Erde—Geochem. 2017, 77, 325–385. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Hughes, J.M.; Freeman, J.J.; Zeigler, R.A. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. Am. Mineral. 2006, 91, 1583–1595. [Google Scholar] [CrossRef]
- Britvin, S.N.; Krivovichev, S.V.; Armbruster, T. Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite-tuite transformation in shergottites. Eur. J. Mineral. 2016, 28, 125–136. [Google Scholar] [CrossRef]
- Lewis, J.A.; Jones, R.H. Phosphate and feldspar mineralogy of equilibrated L chondrites: The record of metasomatism during metamorphism in ordinary chondrite parent bodies. Meteor. Planet. Sci. 2016, 51, 1886–1913. [Google Scholar] [CrossRef] [Green Version]
- Buseck, P.R. Pallasite meteorites—Mineralogy, petrology and geochemistry. Geochim. Cosmochim. Acta 1977, 41, 711–740. [Google Scholar] [CrossRef]
- Buseck, P.B.; Holdsworth, E.F. Phosphate minerals in pallasite meteorites. Mineral. Mag. 1977, 41, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Righter, K.; Arculus, R.J.; Paslick, C.; Delano, J.W. Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites—Implications for the eucrite parent body. Geochim. Cosmochim. Acta 1990, 54, 1803–1815. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, L.H. Stanfieldite: A new phosphate mineral from stony-iron meteorites. Science 1967, 158, 910–911. [Google Scholar] [CrossRef]
- Davis, A.M.; Olsen, E.J. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies. Nature 1991, 353, 637–640. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Kovyazin, S.V.; Podgornykh, N.M. Mineralogy of olivine-hosted inclusions from the Omolon pallasite. In Proceedings of the 37th Annual Lunar and Planetary Science Conference, League City, TX, USA, 13–17 March 2006. abstract no. 1235. [Google Scholar]
- Boesenberg, J.S.; Delaney, J.S.; Hewins, R.H. A petrological and chemical reexamination of Main Group pallasite formation. Geochim. Cosmochim. Acta 2012, 89, 134–158. [Google Scholar] [CrossRef]
- McKibbin, S.J.; Pittarello, L.; Makarona, C.; Hamann, C.; Hecht, L.; Chernonozhkin, S.M.; Goderis, S.; Claeys, P. Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry. Meteor. Planet. Sci. 2019, 54, 2814–2844. [Google Scholar] [CrossRef]
- Kong, P.; Su, W.; Li, X.; Spettel, B.; Palme, H.; Tao, K. Geochemistry and origin of metal, olivine clasts, and matrix in the Dong Ujimqin Qi mesosiderite. Meteor. Planet. Sci. 2008, 43, 451–460. [Google Scholar] [CrossRef]
- Greenwood, R.C.; Barrat, J.-A.; Scott, E.R.D.; Haack, H.; Buchanan, P.C.; Franchi, I.A.; Yamaguchi, A.; Johnson, D.; Bevan, A.W.R.; Burbine, T.H. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochim. Cosmochim. Acta 2015, 169, 115–136. [Google Scholar] [CrossRef]
- Shearer, C.K.; Sharp, Z.D.; Burger, P.V.; McCubbin, F.M.; Provencio, P.P.; Brearley, A.J.; Steele, A. Chlorine distribution and its isotopic composition in “rusty rock” 66095. Implications for volatile element enrichments of “rusty rock” and lunar soils, origin of “rusty” alteration, and volatile element behavior on the Moon. Geochim. Cosmochim. Acta 2014, 139, 411–433. [Google Scholar] [CrossRef]
- Hsu, W. Minor element zoning and trace element geochemistry of pallasites. Meteor. Planet. Sci. 2003, 38, 217–1241. [Google Scholar] [CrossRef]
- Tollari, N.; Toplis, M.J.; Barnes, S.-J. Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochim. Cosmochim. Acta 2006, 70, 1518–1536. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Tropper, P.; Kaindl, R. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Mineral. Petrol. 2013, 107, 327–340. [Google Scholar] [CrossRef]
- Tarrago, M.; Garcia-Valles, M.; Martinez, S.; Pradell, T.; Bruna, P. Fe in P-doped basaltic melts: A Mössbauer spectroscopy study. Mater. Lett. 2018, 228, 57–60. [Google Scholar] [CrossRef]
- LeGeros, R.Z.; Mijares, D.; Yao, F.; Tannous, S.; Catig, G.; Xi, Q.; Dias, R.; LeGeros, J.P. Synthetic bone mineral (SBM) for osteoporosis therapy: Part 1 - prevention of bone loss from mineral deficiency. Key Eng. Mater. 2008, 361–363 Pt 1, 43–46. [Google Scholar] [CrossRef]
- Vorndran, E.; Ewald, A.; Müller, F.A.; Zorn, K.; Kufner, A.; Gbureck, U. Formation and properties of magnesium-ammonium-phosphate hexahydrate biocements in the Ca-Mg-PO4 system. J. Mater. Sci. Mater. Med. 2011, 22, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Alkhraisat, M.H.; Cabrejos-Azama, J.; Rodriguez, C.R.; Jerez, L.B.; Cabarcos, E.L. Magnesium substitution in brushite cements. Mater. Sci. Eng. C 2013, 33, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Christel, T.; Geffers, M.; Klammert, U.; Nies, B.; Höß, A.; Groll, J.; Kübler, A.C.; Gbureck, U. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules. Mater. Sci. Eng. C 2014, 42, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.I.; Ijaz, K.; Zahid, M.; Khan, A.S.; Abdul Kadir, M.R.; Hussain, R.; Anis-ur-Rehman; Darr, J.A.; Ihtesham-ur-Rehman; Chaudhry, A.A. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics. Mater. Sci. Eng. C 2015, 56, 286–293. [Google Scholar] [CrossRef]
- Singh, S.S.; Roy, A.; Lee, B.; Banerjee, I.; Kumta, P.N. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics. Mater. Sci. Eng. C 2016, 67, 636–645. [Google Scholar] [CrossRef]
- Blum, C.; Brückner, T.; Ewald, A.; Ignatius, A.; Gbureck, U. Mg:Ca ratio as regulating factor for osteoclastic in vitro resorption of struvite biocements. Mater. Sci. Eng. C 2017, 73, 111–119. [Google Scholar] [CrossRef]
- Ammar, H.; Nasr, S.; Ageorges, H.; Salem, E.B. Sintering and mechanical properties of magnesium containing hydroxyfluorapatite. J. Aust. Ceram. Soc. 2019, in press. [Google Scholar] [CrossRef]
- Hernandez, A.B.; Ferrasse, J.-H.; Chaurand, P.; Saveyn, H.; Borschneck, D.; Roche, N. Mineralogy and leachability of gasified sewage sludge solid residues. J. Hazard. Mater. 2011, 191, 219–227. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Li, W.; Xu, J.; Liang, Q. Behavior of phosphorus during co-gasification of sewage sludge and coal. Energy Fuels 2012, 26, 2830–2836. [Google Scholar] [CrossRef]
- Qian, T.-T.; Jiang, H. Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustain. Chem. Eng. 2014, 2, 1411–1419. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, Q.; Na, Y. Potential utilization of phosphorus in fly ash from industrial sewage sludge incineration with biomass. Fuel Process. Technol. 2019, 188, 16–21. [Google Scholar] [CrossRef]
- Huminicki, D.M.C.; Hawthorne, F.C. The crystal chemistry of the phosphate minerals. In Phosphates—Geochemical, Geobiological, and Materials Importance; Reviews in Mineralogy and Geochemistry; Kohn, M.L., Rakovan, J., Hughes, J.M., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2002; Volume 48, p. 148. [Google Scholar]
- Jumpei, A. Phase diagrams of Ca3(PO4)2-Mg3(PO4)2 and Ca3(PO4)2-CaNaPO4 systems. Bull. Chem. Soc. Jpn. 1958, 31, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xia, Z. Synthesis and color-tunable luminescence properties of Eu2+ and Mn2+-activated Ca3Mg3(PO4)4 phosphor for solid state lighting. RSC Adv. 2013, 3, 6051–6057. [Google Scholar] [CrossRef]
- Ju, G.; Hu, Y.; Chen, L.; Wang, X.; Mu, Z. Blue persistent luminescence in Eu2+ doped Ca3Mg3(PO4)4. Opt. Mater. 2014, 36, 1183–1188. [Google Scholar] [CrossRef]
- Nair, G.B.; Dhoble, S.J. White light emission through efficient energy transfer from Ce3+ to Dy3+ ions in Ca3Mg3(PO4)4 matrix aided by Li+ charge compensator. J. Lumin. 2017, 192, 1157–1166. [Google Scholar] [CrossRef]
- Nair, G.B.; Dhoble, S.J. Orange light-emitting Ca3Mg3(PO4)4:Sm3+ phosphors. Luminescence 2017, 32, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Y. Effect of oxygen vacancies on the reduction of Eu3+ in Mg3Ca3(PO4)4 in air atmosphere. Inorg. Chem. 2017, 56, 10396–10403. [Google Scholar] [CrossRef]
- Dickens, B.; Brown, W.E. The crystal structure of Ca7Mg9(Ca,Mg)2(PO4)12. Tscherm. Mineral. Petrogr. Mitt. 1971, 16, 79–104. [Google Scholar] [CrossRef]
- Steele, I.M.; Olsen, E. Crystal structure of natural stanfieldite from the Imilac pallasite. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 16–20 March 1992; pp. 1355–1356. [Google Scholar]
- Brahin. Available online: https://www.lpi.usra.edu/meteor/metbull.php?code=5130 (accessed on 27 April 2020).
- Bondar, Y.V.; Perelygin, V.P. Fission track age of the Brahin pallasite. Solar Syst. Res. 2001, 35, 299–306. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisCCD, CrysAlisRED and CrysAlisPRO; Oxford Diffraction Ltd.: Oxford, UK, 2017. [Google Scholar]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Britvin, S.N.; Dolivo-Dobrovolsky, D.V.; Krzhizhanovskaya, M.G. Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Russ. Mineral. Soc. 2017, 146, 104–107. (In Russian) [Google Scholar]
- Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. 1991, 47, 192–197. [Google Scholar] [CrossRef]
- Moore, P.B. Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. Am. Mineral. 1973, 58, 32–42. [Google Scholar]
- Eysel, W. Crystal chemistry of the system Na2SO4–K2SO4–K2CrO4–Na2CrO4 and of the glaserite phase. Am. Mineral. 1973, 58, 736–747. [Google Scholar]
- Gopal, R.; Calvo, C. Structural relationship of whitlockite and β-Ca3(PO4)2. Nat. Phys. Sci. 1972, 237, 30–32. [Google Scholar] [CrossRef]
- El Bali, B.; Boukhari, A.; Holt, E.M.; Aride, J. Calcium nickel orthophosphate: Crystal structure of Ca8.5Ni9.5(PO4)12. Z. Kristallogr. 1995, 210, 838–842. [Google Scholar]
- Inorganic Crystal Structure Database ICSD. Available online: https://icsd.fizkarlsruhe. (accessed on 30 April 2020).
Crystal Data: | Single Crystal | Rietveld Method |
---|---|---|
Crystal system, space group | Monoclinic, C2/c | Monoclinic, C2/c |
Crystal size (mm) | 0.15 × 0.10 × 0.10 | ball Ø 0.15 |
a (Å) | 22.7973(4) | 22.8036(2) |
b (Å) | 9.9833(2) | 9.9832(1) |
c (Å) | 17.0522(3) | 17.0558(2) |
β (°) | 99.954(2) | 99.964(1) |
V (Å3) | 3822.5(1) | 3824.2(1) |
Z | 4 | 4 |
Dx (g cm−1) | 2.990 | 2.988 |
Data collection and refinement: Single Crystal | ||
Diffractometer | Rigaku Oxford Diffraction Xcalibur EoS | |
Radiation | MoKα | |
μ (mm−1) | 2.12 | |
No. of meas., independent and obs. [I > 2σ(I)] reflections | 18,163, 5420, 3949 | |
h, k, l range | –27→32; –14→13; –23→23 | |
Rint, Rσ | 0.044, 0.048 | |
R1 (|Fo|≥4σF), wR2, GoF | 0.034, 0.082, 0.92 | |
Δσmin, Δσmax (e Å−3) | –0.56, 0.86 | |
Data collection and refinement: Rietveld method | ||
Diffractometer | Rigaku RAXIS Rapid II (imaging plate) | |
Radiation | CoKα1/CoKα2 | |
μ (mm−1) | 26.11 | |
Exposure time (s) | 1800 | |
Calculation step (°) | 0.02 | |
2Θ range (°) | 6–132 | |
Peak shape description | Modified Pseudo-Voigt | |
Background subtraction | 28-coefficient Chebyshev polynomial | |
Rp, Rwp, RB (%), GOF | 0.39, 0.69, 0.41, 1.79 |
Imeas | dmeas | Icalc1 | dcalc | hkl | Imeas | dmeas | Icalc1 | dcalc | hkl |
---|---|---|---|---|---|---|---|---|---|
1 | 11.31 | 2 | 11.23 | 200 | 48 | 2.500 | 30 | 2.500 | 623 |
1 | 9.13 | <1 | 9.12 | 110 | 20 | 2.496 | 040 | ||
23 | 8.32 | 21 | 8.26 | −111 | 4 | 2.423 | 4 | 2.420 | 910 |
<1 | 6.26 | 1 | 6.23 | 202 | 6 | 2.401 | 6 | 2.398 | 241 |
23 | 6.00 | 21 | 5.97 | 112 | 2 | 2.379 | 2 | 2.377 | −823 |
<1 | 5.625 | <1 | 5.614 | 400 | 4 | 2.343 | 3 | 2.341 | 911 |
3 | 5.424 | 2 | 5.409 | 311 | 3 | 2.319 | 1, 1 | 2.322 | 135, 533 |
3 | 5.247 | 2 | 5.230 | −312 | 5 | 2.295 | 5 | 2.293 | 624 |
4 | 5.108 | 3 | 5.091 | −402 | 6 | 2.283 | 1, 3 | 2.281 | −441, 440 |
16 | 5.006 | 13 | 4.992 | 020 | 8 | 2.259 | 6 | 2.257 | −716 |
2 | 4.800 | 1 | 4.785 | 021 | 2 | 2.240 | 1, 1 | 2.240 | −442, 441 |
1 | 4.662 | 1 | 4.629 | 113 | 5 | 2.205 | 3 | 2.202 | −626 |
4 | 4.604 | 3 | 4.585 | 312 | 9 | 2.161 | 3 | 2.163 | 027 |
2 | 4.406 | 0.5 | 4.405 | −313 | 2 | 2.160 | −136 | ||
3 | 4.334 | 2 | 4.326 | 221 | 2 | 2.159 | 732 | ||
5 | 4.186 | 4 | 4.177 | −204 | 4 | 2.138 | 1, 1 | 2.138 | −734, −825 |
3 | 4.104 | 2 | 4.096 | 510 | 9 | 2.127 | 5, 4 | 2.126 | 823, 426 |
42 | 3.849 | 36 | 3.842 | 511 | 3 | 2.077 | 2 | 2.076 | 640 |
3.742 | 600 | 2 | 2.066 | 1, 1 | 2.066 | −10.2.2, 227 | |||
3.733 | −421 | 2 | 2.028 | 1 | 2.029 | −10.2.3 | |||
100 | 3.738 | 100 | 3.730 | 420 | 7 | 2.006 | 2 | 2.008 | −245 |
3.727 | 204 | 2 | 2.003 | 045 | |||||
3.726 | 023 | 2 | 2.001 | −518 | |||||
10 | 3.688 | 8 | 3.681 | −404 | 4 | 1.960 | 5 | 1.960 | 914 |
3 | 3.592 | 3 | 3.586 | −513 | 2 | 1.901 | 1, 1 | 1.901 | −736, 318 |
2 | 3.282 | 2 | 3.272 | 422 | 3 | 1.884 | 2 | 1.883 | −153 |
9 | 3.248 | 7 | 3.246 | −131 | 15 | 1.867 | 4 | 1.871 | 12.0.0 |
2 | 3.234 | 314 | 8 | 1.867 | −842 | ||||
3 | 3.217 | 1 | 3.213 | 024 | 4 | 1.864 | 408 | ||
2 | 3.118 | 1 | 3.114 | 404 | 4 | 1.863 | 046 | ||
10 | 3.087 | 7,2 | 3.083 | 115, 513 | 7 | 1.840 | 7 | 1.841 | −808 |
18 | 3.042 | 15 | 3.039 | 132 | 3 | 1.827 | 1, 1 | 1.828 | 841, 915 |
7 | 2.955 | 6 | 2.952 | 423 | 4 | 1.801 | 4 | 1.800 | 551 |
2 | 2.873 | 2 | 2.870 | −133 | 2 | 1.789 | 2 | 1.787 | −338 |
10 | 2.834 | 7 | 2.834 | −206 | 3 | 1.753 | 1, 2 | 1.751 | −429, 138 |
12 | 2.825 | −515 | 2 | 1.742 | 1, 1 | 1.742 | −247, −538 | ||
83 | 2.807 | 26 | 2.812 | −802 | 3 | 1.697 | 2 | 1.697 | 11.1.4 |
27 | 2.807 | 800 | 2 | 1.652 | 2 | 1.653 | −555 | ||
24 | 2.800 | −225 | 3 | 1.621 | 2, 2 | 1.622 | −356, 10.0.6 | ||
12 | 2.731 | 3,5 | 2.730 | −116, 712 | 3 | 1.605 | 2 | 1.605 | −829 |
6 | 2.706 | 5 | 2.705 | 622 | 6 | 1.597 | 6 | 1.597 | 429 |
13 | 2.685 | 11 | 2.682 | −316 | 3 | 1.543 | 3 | 1.543 | 339 |
2 | 2.639 | 2 | 2.642 | 424 | 3 | 1.516 | 2 | 1.515 | −13.1.7 |
2 | 2.621 | 2 | 2.627 | −532 | 3 | 1.481 | 2 | 1.481 | −848 |
3 | 2.601 | 4 | 2.599 | 531 |
Site | CN 2 | Length 3 | BVS 4 | Mg 5 | Length 3 | BVS 4 | Length 3 | Mg 5 |
---|---|---|---|---|---|---|---|---|
Brahin (Present Work) | Ca7(Ca,Mg)Mg9(PO4)12 Synthetic [40] | Imilac [41] | ||||||
Ca1 (4e) | 8 | 2.543 | 1.86 | 2.547 | 1.85 | 2.542 | ||
Ca2 (8f) | 7 | 2.445 | 2.09 | 2.444 | 2.10 | 2.445 | ||
Ca3 (8f) | 8 | 2.566 | 1.69 | 2.569 | 1.68 | 2.573 | ||
Ca4 (8f) | 8 | 2.496 | 2.02 | 2.498 | 2.01 | 2.498 | ||
Mg1 (4e) | 4 | 1.995 | 1.79 | 0.934(5)/0.91 | 1.999 | 1.75 | 0.928(4) | |
Mg2 (8f) | 6 | 2.096 | 2.08 | 0.945(3)/0.94 | 2.095 | 2.07 | 2.097 | 0.942(3) |
Mg3 (8f) | 5 | 2.068 | 1.83 | 0.985(4)/0.98 | 2.071 | 1.81 | 0.969(3) | |
Mg4 (8f) | 5 | 2.049 | 1.92 | 0.983(3)/1.00 | 2.054 | 1.89 | 0.980(3) | |
Mg5 (8f) | 6 | 2.132 | 1.89 | 0.919(3)/0.90 | 2.130 | 1.88 | 0.903(3) | |
M5A (8f) | 6 | 2.257 | 1.89 | See Table 5 | 2.270 | 1.92 | 2.282 | |
P1 (8f) | 4 | 1.535 | 4.83 | 1.540 | 4.76 | |||
P2 (8f) | 4 | 1.535 | 4.83 | 1.538 | 4.79 | |||
P3 (8f) | 4 | 1.537 | 4.81 | 1.541 | 4.75 | |||
P4 (8f) | 4 | 1.532 | 4.85 | 1.538 | 4.78 | |||
P5 (8f) | 4 | 1.534 | 4.83 | 1.536 | 4.81 | |||
P6 (8f) | 4 | 1.530 | 4.89 | 1.532 | 4.86 |
Source | Brahin | Synthetic | Imilac | Estherville |
---|---|---|---|---|
Space group | C2/c | C2/c | C2/c | P2/c or Pc 1 |
a(Å) | 22.7973(4) | 22.841(3) | 22.81 | 17.16(3) |
b(Å) | 9.9833(2) | 9.994(1) | 9.993 | 10.00(2) |
c(Å) | 17.0522(3) | 17.088(5) | 17.09 | 22.88(4) |
β(°) | 99.954(2) | 99.63(3) | 99.96 | 100.3(2) |
V(Å3) | 3822.5 | 3845.8 | 3836.8 | 3862.9 |
Reference | This work | [40] | [41] | [9] |
Brahin | Synthetic | Imilac | |
---|---|---|---|
M5A—O4 | 2.194(2) | 2.212(3) | |
M5A—O5 | 2.291(2) | 2.302(3) | |
M5A—O18 | 2.494(2) | 2.493(3) | |
M5A—O19 | 2.200(2) | 2.223(4) | |
M5A—O22 | 2.099(3) | 2.107(4) | |
M5A—O23 | 2.262(3) | 2.282(4) | |
Mean M5A—O | 2.257 | 2.270 | 2.282 |
BVS | 1.89 | 1.92 | |
Ca | 0.48(4) | 0.51 | 0.55 |
Mg | 0.43(2) | 0.49 | 0.353(3) |
Fe2+ | 0.08(2) | 0.097(3) | |
Reference | This work | [40] | [41] |
Source 2 | ΣCa 3 | ΣMg 4 | P + Si | Reference |
---|---|---|---|---|
Albin | 8.23 | 9.42 | 12.15 | [7] |
Antofagasta | 8.48 | 9.80 | 11.89 | [7] |
Antofagasta | 8.41 | 9.76 | 11.93 | [7] |
Brahin | 7.68 | 10.01 | 12.12 | [43] |
Brahin 5 | 8.04 | 10.03 | 11.97 | |
Eagle Station | 7.63 | 10.56 | 11.93 | [7] |
Eagle Station | 7.24 | 11.19 | 11.86 | [7] |
Eagle Station | 7.78 | 10.02 | 12.08 | [10] |
Estherville | 8.06 | 9.77 | 12.07 | [9] |
Imilac | 7.91 | 10.07 | 12.04 | [7] |
Imilac | 8.11 | 9.85 | 12.02 | [41] |
Lunar | 7.15 | 10.61 | 12.12 | [16] |
Mt. Vernon | 8.21 | 9.91 | 11.95 | [7] |
Mt. Vernon | 8.09 | 9.56 | 12.14 | [7] |
Mt. Vernon | 8.31 | 9.68 | 12.02 | [7] |
Ollague | 8.19 | 10.01 | 11.92 | [7] |
Rawlinna | 7.66 | 11.07 | 11.79 | [7] |
Rawlinna | 7.82 | 10.84 | 11.73 | [7] |
Santa Rosalia | 7.90 | 9.93 | 12.08 | [7] |
Santa Rosalia | 8.12 | 9.58 | 12.13 | [7] |
Santa Rosalia | 7.98 | 9.74 | 12.11 | [7] |
Springwater | 7.97 | 9.88 | 12.08 | [7] |
Springwater | 7.74 | 9.95 | 12.14 | [7] |
Springwater | 7.90 | 10.15 | 12.00 | [7] |
Springwater | 7.87 | 10.11 | 12.01 | [10] |
Vaca Muerta | 7.93 | 10.29 | 11.97 | [15] |
Slags | 8.83 | 9.20 | 12.01 | [19] |
Slags | 7.03 | 10.95 | 12.04 | [19] |
Slags | 7.68 | 10.27 | 12.05 | [19] |
Synthetic | 8.02 | 9.98 | 12.00 | [40] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Britvin, S.N.; Krzhizhanovskaya, M.G.; Bocharov, V.N.; Obolonskaya, E.V. Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors. Crystals 2020, 10, 464. https://doi.org/10.3390/cryst10060464
Britvin SN, Krzhizhanovskaya MG, Bocharov VN, Obolonskaya EV. Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors. Crystals. 2020; 10(6):464. https://doi.org/10.3390/cryst10060464
Chicago/Turabian StyleBritvin, Sergey N., Maria G. Krzhizhanovskaya, Vladimir N. Bocharov, and Edita V. Obolonskaya. 2020. "Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors" Crystals 10, no. 6: 464. https://doi.org/10.3390/cryst10060464
APA StyleBritvin, S. N., Krzhizhanovskaya, M. G., Bocharov, V. N., & Obolonskaya, E. V. (2020). Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors. Crystals, 10(6), 464. https://doi.org/10.3390/cryst10060464