The Effect of Operating Temperature on the Response Time of Optically Driven Liquid Crystal Displays
Abstract
:1. Introduction
2. Materials and Methods
3. Experiments and Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murauski, A.; Chigrinov, V.G.; Li, X.; Kwok, H.S. Optically rewritable LC display with a high contrast and long life time. In Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005, Takamatsu, Japan, 6–9 December 2005; pp. 131–132. [Google Scholar]
- Li, X.; Au, P.T.; Xu, P.; Muravsky, A.; Muravsky, A.; Liu, Z.; Chigrinov, V.G.; Kwok, H.-S. Flexible photoaligned optically rewritable LC display. Symp. Dig. Tech. Pap. 2006, 37, 783–785. [Google Scholar] [CrossRef]
- Muravsky, A.; Murauski, A.; Li, X.; Chigrinov, V.G.; Kwok, H.-S. Optical rewritable liquid crystal alignment technology. J. Soc. Inf. Disp. 2007, 15, 267–273. [Google Scholar] [CrossRef]
- Muravsky, A.; Murauski, A.; Chigrinov, V.G.; Kwok, H.-S. New properties and applications of rewritable azo-dye photoalignment. J. Soc. Inf. Disp. 2008, 16, 927–931. [Google Scholar] [CrossRef]
- Muravsky, A.; Murauski, A.; Chigrinov, V.; Kwok, H.-S. Optical rewritable electronic paper with fluorescent dye doped liquid crystal. Symp. Dig. Tech. Pap. 2008, 39, 915–918. [Google Scholar] [CrossRef]
- Muravsky, A.; Murauski, A.; Chigrinov, V.; Kwok, H.-S. Light printing of grayscale pixel images on optical rewritable electronic paper. J. Appl. Phys. 2008, 47, 6347–6353. [Google Scholar] [CrossRef]
- Muravsky, A.; Murauski, A.; Chigrinov, V.G.; Kwok, H.-S. Optical rewritable electronic paper. IEICE Trans. Electron. 2008, 91, 1576–1580. [Google Scholar] [CrossRef]
- Yu, Q.; Murauski, A.; Du, T.; Yao, L.; Chigrinov, V.; Kwok, H.-S. Light printer for optical rewritable electronic paper. SID Symp. Dig. Tech. Pap. 2009, 40, 1184. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Liu, H.; Chigrinov, V.G.; Kwok, H.S. Increasing The Rewriting Speed of ORW E-paper by Electric Field. Liq. Cryst. 2017, 45, 553–560. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Liu, H.; Gong, X.; Chigrinov, V.G. Increasing Rewriting Speed of Optically Driving Liquid Crystal Display by Process Optimisation. Liq. Cryst. 2018, 46, 151–157. [Google Scholar] [CrossRef]
- Sun, J.T.; Ren, L.H.; Deng, K.L.; Wang, T.; Guo, Q.; Sang, J.X.; Liu, Y.; Liu, H.; Shang, J.H.; Chigrinov, V. Greyscale generation for optically driving liquid crystal display. Liq. Cryst. 2019, 46, 1340–1344. [Google Scholar] [CrossRef]
- Stalder, M.; Schadt, M. Photoaligned bistable twisted nematic liquid crystal displays. Liq. Cryst. 2003, 30, 285–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Liu, Y.; Shang, J.; Liu, H.; Liu, H.; Gong, X.; Chigrinov, V.; Kowk, H.S. A flexible optically re-writable color liquid crystal display. Appl. Phys. Lett. 2018, 112, 131902. [Google Scholar] [CrossRef]
- Hu, W.; Srivastava, A.K.; Xu, F.; Sun, J.-T.; Lin, X.-W.; Cui, H.-Q.; Chigrinov, V.; Lu, Y.-Q. Liquid crystal gratings based on alternate TN and PA photoalignment. Opt. Express 2012, 20, 5384–5391. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sang, J.; Liu, X.; Liu, Y.; Sun, J.; Wang, X.; Guo, Q.; Chigrinov, V. Colour generation for optically driving liquid crystal display. Liq. Cryst. 2019. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, J.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. 3-D gray scale images generation on optically rewritable electronic paper. Symp. Dig. Tech. Pap. 2015, 46, 40. [Google Scholar] [CrossRef]
- Sun, J.; Chigrinov, V.G. Effect of azodye layer on rewriting speed of optical rewritable e-paper. Mol. Cryst. Liq. Cryst. 2012, 561, 1–7. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials: Physics and Applications; Wiley: Hoboken, NJ, USA, 2008; p. 248. [Google Scholar]
- Sun, J.; Srivastava, A.K.; Wang, L.; Chigrinov, V.G.; Kwok, H.-S. Optically tunable and rewritable diffraction grating with photoaligned liquid crystals. Opt. Lett. 2013, 38, 2342. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Sun, J.; Srivastava, A.K.; Guo, Q.; Chigrinov, V.G.; Kwok, H.-S. Optically rewritable ferroelectric liquid-crystal grating. Europhys. Lett. 2013, 102, 24005. [Google Scholar] [CrossRef]
- Chen, P.; Ma, L.-L.; Duan, W.; Chen, J.; Ge, S.; Zhu, Z.-H.; Tang, M.-J.; Xu, R.; Gao, W.; Li, T.; et al. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater. 2018, 30, 1705865. [Google Scholar] [CrossRef]
- Ge, S.; Chen, P.; Shen, Z.; Sun, W.; Wang, X.; Hu, W.; Zhang, Y.; Lu, Y. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express 2017, 25, 12349. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lee, J.H.; Seo, D.-S.; Li, X. Ion-beam-spurted dimethyl-sulfate-doped PEDOT:PSS composite-layer-aligning liquid crystal with low residual direct-current voltage. Appl. Phys. Lett. 2016, 109, 101901. [Google Scholar] [CrossRef]
- Demus, D.; Goodby, J.; Gray, G.W.; Spiess, H.W.; Vill, V. Handbook of Liquid Crystals Volume 1: Fundamentals; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Belyaev, V.V. Viscosity of Nematic Liquid Crystal; Cambridge International Science Press: Cambridge, UK, 2010; p. 128. ISBN1 10: 1904602088. ISBN2 13: 9781904602088. [Google Scholar]
- Belyaev, V.V. Influence of molecular structure of nematic liquid crystals on viscosity coefficients and their temperature dependence. In Physical Properties of Liquid Crystals: Nematics; Dunmur, D.A., Fukuda, A., Luckhurst., G.R., Eds.; IEEE: London, UK, 2000; pp. 414–425. [Google Scholar]
- Kneppe, H.; Schneider, F.; Sharma, N.K. Rotational viscosity γ1 of nematic liquid crystals. J. Chem. Phys. 1982, 77, 3203–3208. [Google Scholar] [CrossRef]
MBBA | 5CB | 8CB | EM | N4 | |||||
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Rotational Viscosity (Pas) | Temperature (°C) | Rotational Viscosity (Pas) | Temperature (°C) | Rotational Viscosity (Pas) | Temperature (°C) | Rotational Viscosity (Pas) | Temperature (°C) | Rotational Viscosity (Pas) |
20.0 | 0.1526 | 23.0 | 0.0968 | 34.0 | 0.1112 | 20.0 | 0.312 | 20.0 | 0.209 |
25.0 | 0.1093 | 26.0 | 0.0777 | 35.0 | 0.0836 | 25.0 | 0.221 | 25.0 | 0.1575 |
30.0 | 0.0785 | 29.0 | 0.0607 | 37.0 | 0.0618 | 30.0 | 0.1592 | 30.0 | 0.1204 |
35.0 | 0.0554 | 32.0 | 0.045 | 39.0 | 0.0447 | 35.0 | 0.1146 | 40.0 | 0.0735 |
40.0 | 0.0365 | 34.0 | 0.0334 | 40.0 | 0.0337 | 40.0 | 0.0807 | 50.0 | 0.0461 |
42.0 | 0.0289 | 34.9 | 0.0262 | 40.5 | 0.025 | 45.0 | 0.0527 | 60.0 | 0.0287 |
44.0 | 0.0192 | 47.0 | 0.0408 | 68.0 | 0.01805 | ||||
48.0 | 0.0334 | 71.0 | 0.01407 | ||||||
73.0 | 0.0109 | ||||||||
74.0 | 0.00876 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chigrinov, V.; Sun, J.; Kuznetsov, M.M.; Belyaev, V.; Chausov, D. The Effect of Operating Temperature on the Response Time of Optically Driven Liquid Crystal Displays. Crystals 2020, 10, 626. https://doi.org/10.3390/cryst10070626
Chigrinov V, Sun J, Kuznetsov MM, Belyaev V, Chausov D. The Effect of Operating Temperature on the Response Time of Optically Driven Liquid Crystal Displays. Crystals. 2020; 10(7):626. https://doi.org/10.3390/cryst10070626
Chicago/Turabian StyleChigrinov, Vladimir, Jiatong Sun, Mikhail M. Kuznetsov, Victor Belyaev, and Denis Chausov. 2020. "The Effect of Operating Temperature on the Response Time of Optically Driven Liquid Crystal Displays" Crystals 10, no. 7: 626. https://doi.org/10.3390/cryst10070626
APA StyleChigrinov, V., Sun, J., Kuznetsov, M. M., Belyaev, V., & Chausov, D. (2020). The Effect of Operating Temperature on the Response Time of Optically Driven Liquid Crystal Displays. Crystals, 10(7), 626. https://doi.org/10.3390/cryst10070626