Spectral Properties of Photo-Aligned Photonic Crystal Fibers Infiltrated with Gold Nanoparticle-Doped Ferroelectric Liquid Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Russell, P.S.J. Photonic-Crystal Fibers. J. Light. Technol. 2006, 24, 4729–4749. [Google Scholar] [CrossRef]
- Larsen, T.; Bjarklev, A.; Hermann, D.; Broeng, J. Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 2003, 11, 2589. [Google Scholar] [CrossRef] [PubMed]
- Woliński, T.R.; Szaniawska, K.; Bondarczuk, K.; Lesiak, P.; Domański, A.W. Propagation properties of photonic crystal fibers filled with nematic liquid crystals. Opto Electron. Rev. 2005, 13, 177–182. [Google Scholar]
- Woliński, T.R.; Szaniawska, K.; Ertman, S.; Lesiak, P.; Domański, A.W.; Dąbrowski, R.; Nowinowski-Kruszelnicki, E.; Wójcik, J. Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres. Meas. Sci. Technol. 2006, 17, 985–991. [Google Scholar] [CrossRef]
- Hu, J.J.; Shum, P.; Ren, G.; Yu, X.; Wang, G.; Lu, C.; Ertman, S.; Woliński, T.R. Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers. Opt. Commun. 2008, 281, 4339–4342. [Google Scholar] [CrossRef]
- Haakestad, M.W.; Alkeskjold, T.T.; Nielsen, M.D.; Scolari, L.; Riishede, J.; Engan, H.E.; Bjarklev, A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonics Technol. Lett. 2005, 17, 819–821. [Google Scholar] [CrossRef]
- Du, F.; Lu, Y.-Q.; Wu, S.-T. Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 2004, 85, 2181–2183. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, A.; Kitzerow, H.-S. Efficient electro-optic switching in a photonic liquid crystal fiber. Appl. Phys. Lett. 2011, 98, 241106. [Google Scholar] [CrossRef]
- Khan, K.R.; Bidnyk, S.; Hall, T.J. Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber. Prog. Electromagn. Res. M 2012, 22, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Budaszewski, D.; Srivastava, A.K.; Woliński, T.R.; Chigrinov, V.G. Photo-aligned photonic ferroelectric liquid crystal fibers. J. Soc. Inf. Disp. 2015, 23, 196–201. [Google Scholar] [CrossRef]
- Knust, S.; Wahle, M.; Kitzerow, H.S. Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms. J. Phys. Chem. B 2017, 121, 5110–5115. [Google Scholar] [CrossRef] [PubMed]
- Poudereux, D.; Orzechowski, K.; Chojnowska, O.; Tefelska, M.; Woliński, T.R.; Otón, J.M. Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase. In Proceedings of the Symposium on Photonics Applications in Astronomy, Communications, Industry and High-Energy Physics Experiments, Warsaw, Poland, 16 December 2014. [Google Scholar]
- Dąbrowski, R. From the discovery of the partially bilayer smectic A phase to blue phases in polar liquid crystals. Liq. Cryst. 2015, 42, 783–818. [Google Scholar] [CrossRef]
- Sala-Tefelska, M.M.; Orzechowski, K.; Sierakowski, M.; Siarkowska, A.; Woliński, T.R.; Strzeżysz, O.; Kula, P. Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains. Opt. Mater. 2018, 75, 211–215. [Google Scholar] [CrossRef] [Green Version]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, UK; New York, NY, USA, 1995. [Google Scholar]
- Blinov, L.M.; Chigrinov, V.G. Electrooptic Effects in Liquid Crystal Materials; Partially Ordered Systems; Springer: New York, NY, USA, 1994; ISBN 978-0-387-94708-2. [Google Scholar]
- Budaszewski, D.; Srivastava, A.K.; Chigrinov, V.G.; Woliński, T.R. Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres. Liq. Cryst. 2019, 46, 272–280. [Google Scholar] [CrossRef]
- Budaszewski, D.; Srivastava, A.K.; Tam, A.M.W.; Woliński, T.R.; Chigrinov, V.G.; Kwok, H. Photo-aligned ferroelectric liquid crystals in microchannels. Opt. Lett. 2014, 39, 4679. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Kozenkov, V.M.; Kwok, H.-S. Photoalignment of Liquid Crystalline Materials; John Wiley & Sons: West Sussex, UK, 2008; ISBN 9780470751800. [Google Scholar]
- Schadt, M.; Schmitt, K.; Kozinkov, V.; Chigrinov, V. Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers. Jpn. J. Appl. Phys. 1992, 31, 2155–2164. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Garbat, K.; Urban, S.; Woliński, T.R.; Dziaduszek, J.; Ogrodnik, T.; Siarkowska, A. Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application. Liq. Cryst. 2017, 44, 1911–1928. [Google Scholar] [CrossRef]
- Budaszewski, D.; Siarkowska, A.; Chychłowski, M.; Jankiewicz, B.; Bartosewicz, B.; Dąbrowski, R.; Woliński, T.R. Nanoparticles-enhanced photonic liquid crystal fibers. J. Mol. Liq. 2018, 267, 271–278. [Google Scholar] [CrossRef]
- Budaszewski, D.; Chychłowski, M.; Budaszewska, A.; Bartosewicz, B.; Jankiewicz, B.; Woliński, T.R. Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles. Opt. Express 2019, 27, 14260. [Google Scholar] [CrossRef]
- Klein, S.; Richardson, R.M.; Greasty, R.; Jenkins, R.; Stone, J.; Thomas, M.R.; Sarua, A. The influence of suspended nanoparticles on the Frederiks threshold of the nematic host. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120253. [Google Scholar] [CrossRef]
- Li, F.; West, J.; Glushchenko, A.; Cheon, C.I.; Reznikov, Y. Ferroelectric nanoparticle/liquid-crystal colloids for display applications. J. Soc. Inf. Disp. 2006, 14, 523. [Google Scholar] [CrossRef]
- Blach, J.-F.; Saitzek, S.; Legrand, C.; Dupont, L.; Henninot, J.-F.; Warenghem, M. BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization. J. Appl. Phys. 2010, 107, 074102. [Google Scholar] [CrossRef]
- Glushchenko, A.; Cheon, C.I.; West, J.; Li, F.; Büyüktanir, E.; Reznikov, Y.; Buchnev, A. Ferroelectric Particles in Liquid Crystals: Recent Frontiers. Mol. Cryst. Liq. Cryst. 2006, 453, 227–237. [Google Scholar] [CrossRef]
- Chaudhary, A.; Malik, P.; Mehra, R.; Raina, K.K. Electro-optic and dielectric studies of silica nanoparticle doped ferroelectric liquid crystal in SmC phase. Phase Transit. 2012, 85, 244–254. [Google Scholar] [CrossRef]
- Mikułko, A.; Arora, P.; Glushchenko, A.; Lapanik, A.; Haase, W. Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid-crystalline mixture. EPL Europhys. Lett. 2009, 87, 27009. [Google Scholar] [CrossRef]
- Kumar, P.; Sinha, A. Effect of barium titanate nanoparticles of different particle sizes on electro-optic and dielectric properties of ferroelectric liquid crystal. Phase Transit. 2015, 88, 605–620. [Google Scholar] [CrossRef]
- Al-Zangana, S.; Turner, M.; Dierking, I. A comparison between size dependent paraelectric and ferroelectric BaTiO3 nanoparticle doped nematic and ferroelectric liquid crystals. J. Appl. Phys. 2017, 121, 085105. [Google Scholar] [CrossRef] [Green Version]
- Kumar Gupta, S.; Pratap Singh, D.; Manohar, R. Electrical and Polarization Behaviour of Titania Nanoparticles Doped Ferroelectric Liquid Crystal. Adv. Mater. Lett. 2015, 6, 68–72. [Google Scholar] [CrossRef]
- Kumar, P.; Kishore, A.; Sinha, A. Effect of Different Concentrations of Dopant Titanium Dioxide Nanoparticles on Electro-optic and dielectric Properties of Ferroelectric Liquid Crystal Mixture. Adv. Mater. Lett. 2016, 7, 104–110. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Joshi, T.; Rao, G.K.; Singh, A.K.; Biradar, A.M. Tailoring of electro-optical properties of ferroelectric liquid crystals by doping Pd nanoparticles. Appl. Phys. Lett. 2012, 100, 054102. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Joshi, T.; Biradar, A.M. Electro-optical and dielectric characteristics of ferroelectric liquid crystal dispersed with palladium nanoparticles. J. Mol. Liq. 2020, 315, 113776. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.P.; Biradar, A.M.; Choudhary, A.; Sreenivas, K. Enhanced electro-optical properties in gold nanoparticles doped ferroelectric liquid crystals. Appl. Phys. Lett. 2007, 91, 023120. [Google Scholar] [CrossRef]
- Kumar, A.; Prakash, J.; Mehta, D.S.; Biradar, A.M.; Haase, W. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl. Phys. Lett. 2009, 95, 023117. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in gold nanoparticle–liquid crystal composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef] [PubMed]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802. [Google Scholar] [CrossRef]
Material | Beginning of the Phase Transition (°C) | End of the Phase Transition (°C) |
---|---|---|
W212 | 117.6 | 126.1 |
W212 + 0.1% GNP | 115.1 | 125.4 |
W212 + 0.2% GNP | 110.2 | 116.6 |
W212 + 0.3% GNP | 107.8 | 114.5 |
W212 + 0.5% GNP | 105.1 | 110.3 |
Material | Light Spectrum Shift (nm) |
---|---|
W212 | 88 |
W212 + 0.1% GNP | 75 |
W212 + 0.2% GNP | 67 |
W212 + 0.3% GNP | 66 |
W212 + 0.5% GNP | 45 |
Material | Low Electric Field Intensity (0.71 V/µm) (ms) | High Electric Field Intensity (5.36 V/µm) (ms) |
---|---|---|
Pure W212 FLC | 8.96 | 2.01 |
W212 + 0.1% wt. GNPs | 7.00 | 1.92 |
W212 + 0.2% wt. GNPs | 6.53 | 1.90 |
W212 + 0.3% wt. GNPs | 5.80 | 1.85 |
W212 + 0.5% wt. GNPs | 5.00 | 1.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budaszewski, D.; Wolińska, K.; Jankiewicz, B.; Bartosewicz, B.; Woliński, T.R. Spectral Properties of Photo-Aligned Photonic Crystal Fibers Infiltrated with Gold Nanoparticle-Doped Ferroelectric Liquid Crystals. Crystals 2020, 10, 785. https://doi.org/10.3390/cryst10090785
Budaszewski D, Wolińska K, Jankiewicz B, Bartosewicz B, Woliński TR. Spectral Properties of Photo-Aligned Photonic Crystal Fibers Infiltrated with Gold Nanoparticle-Doped Ferroelectric Liquid Crystals. Crystals. 2020; 10(9):785. https://doi.org/10.3390/cryst10090785
Chicago/Turabian StyleBudaszewski, Daniel, Kaja Wolińska, Bartłomiej Jankiewicz, Bartosz Bartosewicz, and Tomasz Ryszard Woliński. 2020. "Spectral Properties of Photo-Aligned Photonic Crystal Fibers Infiltrated with Gold Nanoparticle-Doped Ferroelectric Liquid Crystals" Crystals 10, no. 9: 785. https://doi.org/10.3390/cryst10090785
APA StyleBudaszewski, D., Wolińska, K., Jankiewicz, B., Bartosewicz, B., & Woliński, T. R. (2020). Spectral Properties of Photo-Aligned Photonic Crystal Fibers Infiltrated with Gold Nanoparticle-Doped Ferroelectric Liquid Crystals. Crystals, 10(9), 785. https://doi.org/10.3390/cryst10090785