Investigation of Barrier Inhomogeneities and Electronic Transport on Al-Foil/p-Type-4H-SiC Schottky Barrier Diodes Using Diffusion Welding
Abstract
:1. Introduction
2. Sample Preparation and Experimental Procedure
2.1. Sample Preparation Procedure
2.2. Electrical Measurement Procedure
3. Results and Discussion
3.1. Temperature Dependence of I-V Characteristics
3.2. Temperature Dependence of C-V Characteristics
3.3. Discussion of the I-V-T and C-V-T Results
3.4. Activation Energy Plot Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lebedev, A.A. Heterojunctions and superlattices based on silicon carbide Semicond. Sci. Technol. 2006, 21, R17. [Google Scholar] [CrossRef]
- Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015, 54, 040103. [Google Scholar] [CrossRef]
- Casady, J.B.; Johnson, R.W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Bakowski, M.; Gustafsson, U.; Lindefelt, U. Simulation of SiC High Power Devices. Phys. Status Solidi A 1997, 162, 421. [Google Scholar] [CrossRef]
- Schaffer, W.J.; Negley, G.H.; Irvine, K.G.; Palmour, J.W. Conductivity Anisotropy in Epitaxial 6H and 4H Sic. Mater. Res. Soc. Symp. Proc. 1994, 339, 595. [Google Scholar] [CrossRef]
- Pernot, J.; Contreras, S.; Camassel, J.; Robert, J.L.; Zawadzki, W.; Neyret, E.; Cioccio, L.D. Free electron density and mobility in high-quality 4H–SiC. Appl. Phys. Lett. 2000, 77, 4359. [Google Scholar] [CrossRef]
- Matsunami, H.; Kimoto, T. Step-controlled epitaxial growth of SiC: High quality homoepitaxy. Mater. Sci. Eng. 1997, 20, 125. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Wang, C.; Zheng, Z.; Kong, L. Preparation and Sintering Properties of Ag27Cu2Sn Nano paste as Die Attach Material. J. Electr. Mater. 2016, 45, 5436–5442. [Google Scholar] [CrossRef]
- Kim, D.; Chen, C.; Pei, C.; Zhang, Z.; Nagao, S.; Suetake, A.; Sugahara, T.; Suganuma, K. Thermal shock reliability of a GaN die-attach module on DBA substrate with Ti/Ag metallization by using micron/submicron Ag sinter paste. Jpn. J. Appl. Phys. 2019, 58. [Google Scholar] [CrossRef] [Green Version]
- Drevin-Bazin, A.; Lacroix, F.; Barbot, J. SiC Die Attach for High-Temperature Applications. J. Electr. Mater. 2014, 43, 695–701. [Google Scholar] [CrossRef]
- Kamal, Z.; Lakhdar, D. Inhomogeneous barrier height effect on the current-voltage characteristics of a W/4H-Sic Schottky diode. In Proceedings of the 5th International Conference on Electrical Engineering, Boumerdes, Algeria, 29–31 October 2017; pp. 29–31. [Google Scholar] [CrossRef]
- Moriceau, H.; Rieutord, F.; Fournel, F.; Le Tiec, Y.; Di Cioccio, L.; Morales, C.; Charvet, A.M.; Deguet, C. Overview of recent direct wafer bonding advances and applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 1, 043004. [Google Scholar] [CrossRef] [Green Version]
- Rudawska, A. Surface Treatment in Bonding Technology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Korolkov, O.; Rang, T. Comparative characteristics of 6h– and 4h–sic surfaces in diffusion welding. Proc. Est. Acad. Sci. Eng. 2001, 7, 347–353. [Google Scholar]
- Korolkov, O.; Rang, T.; Kuznetsova, N.; Ruut, J. Preliminary investigation of diffusion welded contacts to p-6H-SiC. In Proceedings of the BEC Proceedings of the 8th Biennial Baltic Electronics Conference, Tallinn, Estonia, 6–9 October 2002; pp. 55–56. [Google Scholar]
- Ziko, M.H.; Koel, A.; Rang, T.; Toompuu, J. Analysis of barrier inhomogeneities of p-type Al/4H-SiC Schottky barrier diodes. In Proceedings of the 18th ISCRM Conference, Kyoto, Japan, 28 September–4 October 2019. [Google Scholar]
- Karatas, S.; Altindal, S.; Cakar, M. Current transport in Zn/p-Si(100) Schottky barrier diodes at high temperatures. Phys. B Condens. Matter. 2005, 357, 386–397. [Google Scholar] [CrossRef]
- Roccaforte, F.; La Via, F.; Raineri, V.; Pierobon, R.; Zanoni, E. Richardson’s constant in inhomogeneous silicon carbide Schottky contacts. J. Appl. Phys. 2003, 93, 9137. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: New York, NY, USA, 1982; Chapters 1, 5, 9. [Google Scholar]
- Tung, R.T. Recent Advances in Schottky Barrier Concepts. Mater. Sci. Eng. R 2001, 35, 1–138. [Google Scholar] [CrossRef]
- Barus, M.; Donoval, D. Analysis of I-V measurements on CrSi2 Si Schottky structures in a wide temperature range. Solid-State Electron. 1993, 36, 969–974. [Google Scholar] [CrossRef]
- Hudait, M.K.; Venkateswarlu, P.; Krupanidhi, S.B. Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid-State Electron. 2001, 45, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Donoval, D.; Barus, M.; Zdimal, M. Analysis of I-V measurements on PtSi-Si Schottky structures in a wide temperature range. Solid-State Electron. 1991, 34, 1365–1373. [Google Scholar] [CrossRef]
- Horváth, Z.J.; Bosacchi, A.; Franchi, S.; Gombia, E.; Mosca, R.; Motta, A. Anomalous thermionic-field emission in epitaxial Al/n-AlGaAs junctions. Mater. Sci. Eng. B. 1994, 28, 429–432. [Google Scholar] [CrossRef]
- Tung, R.T.; Sullivan, J.P.; Schrey, F. On the inhomogeneity of Schottky barriers. Mater. Sci. Eng. B 1992, 14, 266–280. [Google Scholar] [CrossRef]
- Werner, J.H.; Guttler, H.H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 1991, 69, 1522–1533. [Google Scholar] [CrossRef]
- Kaushal, P.; Ch, S.; Osvald, J. Current–voltage characteristics of Schottky diode simulated using semiconductor device equations. Int. J. Electron. 2013, 686–698. [Google Scholar] [CrossRef]
- Kaushal, P.; Ch, S.; Osvald, J. Numerical analysis of inhomogeneous Schottky diode with discrete barrier height patches. Int. J. Electron. 2016, 937–949. [Google Scholar] [CrossRef]
- Kurel, R.; Rang, T.; Poirier, L. An analysis of Critical Parameters for SiC JBS Structures. In Proceedings of the of the Estonian Academy of Sciences (284–299); Estonian Academy: Tallinn, Estonia, 2006. [Google Scholar]
- Rang, T.; Kurel, R.; Higelin, G.; Poirier, L. Current crowding phenomenon in JBC structures. In Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics; Wessex Institute of Technology Press: Southampton, NY, USA, 2005; pp. 387–396. [Google Scholar]
- Vasilevski, K.V.; Rendakova, S.V.; Nikitina, I.P.; Babanin, A.I.; Andreev, A.N. Electrical characteristics and structural properties of ohmic contacts to p 4H-SiC epitaxial layers. Semiconductors 1999, 33, 1206–1211. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 1986, 49, 85. [Google Scholar] [CrossRef]
- Raghunathan, R.; Baliga, B.J. p-4H and 6H-SiC high-voltage Schottky barrier diodes. IEEE Electron. Devices Lett. 1998, 19, 71. [Google Scholar] [CrossRef]
- Rhoderick, E.H.; Williams, R.H. Metal-Semiconductor Contacts, 2nd ed.; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Lee, S.K.; Zetterling, C.M.; Östling, M. Schottky diode formation and characterization of titanium tungsten to n- and p 4H silicon carbide. J. Appl. Phys. 2000, 87, 8039. [Google Scholar] [CrossRef]
- Itoh, A.; Kimoto, T.; Matsunami, H. High performance of high-voltage 4H-SiC Schottky barrier diodes. IEEE Electron. Dev. Lett. 1995, 16, 280–282. [Google Scholar] [CrossRef]
- Lundberg, N.; Östling, M. Thermally stable low ohmic contacts to p 6H-SiC using cobalt silicides. Solid-State Electron. 1996, 39, 1559–1565. [Google Scholar] [CrossRef]
- Tung, R.T. Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. 1992, 45, 13509. [Google Scholar] [CrossRef]
- Sullivan, J.P.; Tung, R.T.; Pinto, M.R.; Graham, W.R. Electron transport of inhomogeneous Schottky barriers: A numerical study. J. Appl. Phys. 1991, 70, 7403–7424. [Google Scholar] [CrossRef]
- Nicholls, J.R.; Dimitrijev, S.; Tanner, P.; Han, J. The Role of Near-Interface Traps in Modulating the Barrier Height of SiC Schottky Diodes. IEEE Trans. Electron. Devices 2019, 66, 1675–1680. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziko, M.H.; Koel, A.; Rang, T.; Rashid, M.H. Investigation of Barrier Inhomogeneities and Electronic Transport on Al-Foil/p-Type-4H-SiC Schottky Barrier Diodes Using Diffusion Welding. Crystals 2020, 10, 636. https://doi.org/10.3390/cryst10080636
Ziko MH, Koel A, Rang T, Rashid MH. Investigation of Barrier Inhomogeneities and Electronic Transport on Al-Foil/p-Type-4H-SiC Schottky Barrier Diodes Using Diffusion Welding. Crystals. 2020; 10(8):636. https://doi.org/10.3390/cryst10080636
Chicago/Turabian StyleZiko, Mehadi Hasan, Ants Koel, Toomas Rang, and Muhammad Haroon Rashid. 2020. "Investigation of Barrier Inhomogeneities and Electronic Transport on Al-Foil/p-Type-4H-SiC Schottky Barrier Diodes Using Diffusion Welding" Crystals 10, no. 8: 636. https://doi.org/10.3390/cryst10080636
APA StyleZiko, M. H., Koel, A., Rang, T., & Rashid, M. H. (2020). Investigation of Barrier Inhomogeneities and Electronic Transport on Al-Foil/p-Type-4H-SiC Schottky Barrier Diodes Using Diffusion Welding. Crystals, 10(8), 636. https://doi.org/10.3390/cryst10080636