First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst
Abstract
:1. Introduction
2. Calculation Methods
- and , two vectors on the crystal plane, are obtained according to the Miller index of the crystal plane. Since it is difficult to obtain the vector product from a coordinate system that is not an orthogonal coordinate system (α = β = 90°, γ = 120°), the vector product is solved by transforming the coordinates into the coordinates in the orthogonal coordinate system, and then the vector product is obtained before is converted into , as shown in Equation (1), Equation (2) and Equation (3):
- and the point are obtained by conducting symmetric operation on and the point on the crystal plane based on the general equivalent point system of the P63mc symmetry group (see Table 1).
- The intercept of the crystal plane on the coordinate axis is solved by the plane equation in the current coordinate system, as shown in Equations (4) and (5):
- The Miller index of the symmetric crystal plane can be obtained from calculating the intercept with the plane equation. Besides, the stability of the crystal plane is measured by the surface energy, as shown in Equation (6):
3. Results and Discussion
3.1. Calculation Results of the h-Fe7C3 Crystal Plane
3.2. CO Adsorption and Activation on the h-Fe7C3 Crystal Plane
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fischer, F.; Tropsch, H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennst. Chem. 1923, 4, 276–285. [Google Scholar]
- Fischer, F.; Tropsch, H. The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennst. Chem. 1926, 7, 97–104. [Google Scholar]
- Huang, G.; Li, X.; Yang, Y.; Zhang, B.; Jin, Y.; Shi, X. Development status direction of coal to oil technology in China. Petrochem. Technol. Appl. 2017, 35, 421–428. [Google Scholar]
- Zhang, Q.; Kang, J.; Wang, Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- Wu, P.; Chou, W.; Wang, P.; Luo, M. Effect of precipitation temperature on the catalytic properties of precipitated iron in Fischer-Tropsch synthesis. Petrochem. Technol. 2019, 48, 243–248. [Google Scholar]
- Wang, X.; Meng, Z.; Lyu, Y.; Li, Y. Research advances in reduction mechanism and kinetics of iron—Based Fisher—Tropsch catalyst. Clean Coal Technol. 2017, 23, 1–7. [Google Scholar]
- Shroff, M.; Kalakkad, D.; Coulter, K.; Kohler, S.; Harrington, M.; Jackson, N.; Sault, A.; Datye, A.K. Activation of Precipitated Iron Fischer-Tropsch Synthesis Catalysts. J. Catal. 1995, 156, 185–207. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Huo, C.; Liu, H. Effects of phase and structure of Fe1-xO-based fused iron catalyst on its performance for producing light olefins from syngas. Petrochem. Technol. 2018, 47, 775–780. [Google Scholar]
- Rao, K.R.P.M.; Huggins, F.E.; Mahajan, V.; Huffman, G.P.; Bukur, D.B.; Rao, V.U.S. Mössbauer study of CO-precipitated Fischer-Tropsch iron catalysts. Hyperfine Interact. 1994, 93, 1751–1754. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, C.; Liu, C.; Wei, Y.; Cheruvathur, A.V.; Dugulan, A.I.; Niemantsverdriet, J.W.; Liu, X.; He, Y.; Qing, M.; et al. Relationship between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer–Tropsch Catalysts. Acs Catal. 2018, 8, 3304–3316. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Liu, Y.; Chen, Z.; Liu, D.; Yu, E.; Zhang, X.; Fu, H.; Fu, J.; Zhang, J.; Du, H. Amorphous molybdenum sulfide nanocatalysts simultaneously realizing efficient upgrading of residue and synergistic synthesis of 2D MoS2 nanosheets/carbon hierarchical structures. Green Chem. 2020, 22, 44–53. [Google Scholar] [CrossRef]
- Ghosh, P.S.; Ali, K.; Vineet, A.; Voleti, A.; Arya, A. Study of structural, mechanical and thermal properties of θ-Fe3C, o-Fe7C3 and h-Fe7C3 phases using molecular dynamics simulations. J. Alloy. Compd. 2017, 726, 989–1002. [Google Scholar] [CrossRef]
- Broos, R.J.P.; Zijlstra, B.; Filot, I.A.W.; Hensen, E.J.M. Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the χ-Fe5C2 Hägg Carbide. J. Phys. Chem. C 2018, 122, 9929–9938. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, M. Polytypic structures of (Cr, Fe)7C3 carbides. J. Appl. Crystallogr. 1985, 18, 430–435. [Google Scholar] [CrossRef]
Surface | Surface Energy (J/m2) | Surface | Surface Energy (J/m2) |
---|---|---|---|
2.55 | 2.91 | ||
2.58 | 2.96 | ||
2.64 | 3.09 | ||
2.78 | 3.29 | ||
2.84 | 3.30 |
General Equivalent Point System | |||||
---|---|---|---|---|---|
x, y, z | |||||
−y, x − y, z | |||||
−x + y, −x, z | |||||
−x, −y, z + 1/2 | |||||
y, −x + y, z + 1/2 | |||||
x − y, x, z + 1/2 | |||||
−y, −x, z | |||||
−x + y, y, z | |||||
x, x − y, z | |||||
y, x, z + 1/2 | |||||
x − y, −y, z + 1/2 | |||||
−x, −x + y, z + 1/2 |
Surface | Site | Eads/eV | d(C-O)/Å | d(O-Fe)/Å | d(C-Fe)Å | ||||
---|---|---|---|---|---|---|---|---|---|
2F1 | −2.09 | 1.191 | 1.777 | 2.284 | |||||
2F2 | −2.16 | 1.194 | 1.883 | 1.975 | |||||
T1 | −2.06 | 1.180 | 1.779 | ||||||
T2 | −2.09 | 1.182 | 1.785 | ||||||
T1 | −1.67 | 1.177 | 1.759 | ||||||
T2 | −1.62 | 1.175 | 1.741 | ||||||
4F1 | −2.45 | 1.328 | 2.067 | 2.275 | 1.944 | 2.003 | 2.006 | 2.289 | |
3F1 | −1.96 | 1.221 | 1.902 | 2.032 | 2.042 | ||||
T3 | −2.34 | 1.184 | 1.762 | ||||||
2F1 | −1.88 | 1.201 | 1.795 | 2.029 | |||||
3F2 | −2.50 | 1.315 | 1.996 | 1.985 | 1.987 | 1.990 | |||
T1 | −2.12 | 1.174 | 1.771 | ||||||
2F1 | −2.24 | 1.196 | 1.857 | 1.949 | |||||
T2 | −1.01 | 1.169 | 1.810 | ||||||
T3 | −1.73 | 1.176 | 1.760 | ||||||
T4 | −1.63 | 1.175 | 1.763 | ||||||
T5 | −1.29 | 1.171 | 1.779 | ||||||
T6 | −1.60 | 1.176 | 1.762 | ||||||
2F1 | −2.18 | 1.200 | 1.796 | 2.324 | |||||
T1 | −1.78 | 1.182 | 1.767 | ||||||
2F2 | −1.99 | 1.191 | 1.784 | 2.253 | |||||
T2 | −1.92 | 1.179 | 1.782 | ||||||
T3 | −2.00 | 1.179 | 1.780 | ||||||
3F1 | −2.08 | 1.290 | 2.155 | 1.943 | 1.959 | 1.977 | |||
3F2 | −2.09 | 1.203 | 1.839 | 2.124 | 2.221 | ||||
4F1 | −2.02 | 1.294 | 2.156 | 2.177 | 1.921 | 1.930 | 2.040 | 2.035 | |
2F3 | −1.70 | 1.197 | 1.959 | 1.982 | |||||
4F2 | −1.97 | 1.274 | 1.986 | 1.995 | 2.006 | 2.267 | |||
4F3 | −2.27 | 1.220 | 1.949 | 1.957 | 2.269 | 2.344 | |||
3F1 | −2.47 | 1.202 | 1.997 | 1.984 | 1.989 | ||||
T1 | −1.97 | 1.188 | 1.763 | ||||||
T2 | −2.24 | 1.189 | 1.750 | ||||||
4F1 | −2.22 | 1.219 | 1.889 | 2.072 | 2.251 | 2.276 | |||
T3 | −2.16 | 1.176 | 1.790 | ||||||
3F2 | −1.93 | 1.211 | 1.973 | 1.975 | 1.981 | ||||
T4 | −1.83 | 1.185 | 1.772 | ||||||
4F2 | −2.25 | 1.310 | 2.084 | 2.091 | 1.927 | 1.932 | 2.070 | 2.072 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Sun, D.; Chen, Z.; Zhang, J.; Du, H. First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst. Crystals 2020, 10, 635. https://doi.org/10.3390/cryst10080635
Fu J, Sun D, Chen Z, Zhang J, Du H. First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst. Crystals. 2020; 10(8):635. https://doi.org/10.3390/cryst10080635
Chicago/Turabian StyleFu, Jinzhe, Deshuai Sun, Zhaojun Chen, Jian Zhang, and Hui Du. 2020. "First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst" Crystals 10, no. 8: 635. https://doi.org/10.3390/cryst10080635
APA StyleFu, J., Sun, D., Chen, Z., Zhang, J., & Du, H. (2020). First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst. Crystals, 10(8), 635. https://doi.org/10.3390/cryst10080635