Pharmaceutical Salts of Enrofloxacin with Organic Acids
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Crystallization of Enrofloxacin Anhydrate
2.3. Preparation of Salts and Crystallization
2.4. Field-Emission Scanning Electron Microscopy (FESEM)
2.5. Powder X-ray Diffraction (PXRD)
2.6. Fourier Transform Infrared (FT-IR)
2.7. Single Crystal X-ray Diffraction (SCXRD)
2.8. Differential Scanning Calorimetry (DSC)
2.9. Solubility Analyses
3. Results and Discussion
3.1. Field-Emission Scanning Electron Microscopy (FESEM)
3.2. PXRD Analysis
3.3. Spectroscopic Characterization
3.4. Crystal Structure Analysis
3.4.1. Crystallization of Enrofloxacin Anhydrate (1)
3.4.2. Enrofloxacin Tartrate Trihydrate (2)
3.4.3. Enrofloxacin Nicotinate-EtOH Salt Solvate (3)
3.4.4. Enrofloxacin Suberate-2EtOH Salt Solvate (4)
3.5. Thermal Analysis
3.6. Results for Solubility Study
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vishweshwar, P.; McMahon, J.A.; Peterson, M.L.; Hickey, M.B.; Shattock, T.R.; Zaworotko, M.J. Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. Chem. Commun. 2005, 36, 4601. [Google Scholar] [CrossRef] [PubMed]
- Maeno, Y.; Fukami, T.; Kawahata, M.; Yamaguchi, K.; Tagami, T.; Ozeki, T.; Suzuki, T.; Tomono, K. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int. J. Pharmaceut. 2014, 473, 179–186. [Google Scholar] [CrossRef]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.P.; Childs, S.L.; Giordano, J.; Iarriccio, A.; Cassidy, J.; Shet, M.S.; Mannion, R.; O’Donnell, E.; Park, A. Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API. Pharm. Res. Dordr. 2006, 23, 1888–1897. [Google Scholar] [CrossRef]
- Jones, W.; Motherwell, W.D.S.; Trask, A.V. Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement. MRS Bull. 2006, 11, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453, 101–125. [Google Scholar] [CrossRef] [PubMed]
- Darwish, S.; Zeglinski, J.; Krishna, G.R.; Shaikh, R.; Khraisheh, M.; Walker, G.M.; Croker, D.M. A New 1:1 Drug-Drug Cocrystal of Theophylline and Aspirin: Discovery, Characterization, and Construction of Ternary Phase Diagrams. Cryst. Growth Des. 2018, 18, 7526–7532. [Google Scholar] [CrossRef] [Green Version]
- Aakeröy, C.B.; Fasulo, M.E.; Desper, J. Cocrystal or Salt: Does It Really Matter? Mol. Pharm. 2007, 4, 317–322. [Google Scholar] [CrossRef]
- Basavoju, S.; Boström, D.; Velaga, S.P. Pharmaceutical Cocrystal and Salts of Norfloxacin. Cryst. Growth Des. 2006, 6, 2699–2708. [Google Scholar] [CrossRef]
- Berge, S.M.; Bighley, L.D.; Monkhouse, D.C. Pharmaceutical salts. J. Pharm. Sci. 1977, 66, 1–19. [Google Scholar] [CrossRef]
- Datta, S.; Grant, D.J.W. Crystal structures of drugs: Advances in determination, prediction and engineering. Nat. Rev. Drug Discov. 2004, 3, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.C. Drug Product Selection—Part 2: Scientific basis of bioavailability and bioequivalence testing. Am. Pharm. 1991, NS31, 47–52. [Google Scholar] [CrossRef]
- Fleischman, S.G.; Kuduva, S.S.; McMahon, J.A.; Moulton, B.; Bailey Walsh, R.D.; Rodríguez-Hornedo, N.; Zaworotko, M.J. Crystal Engineering of the Composition of Pharmaceutical Phases: Multiple-Component Crystalline Solids Involving Carbamazepine. Cryst. Growth Des. 2003, 3, 909–919. [Google Scholar] [CrossRef]
- Childs, S.L.; Chyall, L.J.; Dunlap, J.T.; Smolenskaya, V.N.; Stahly, B.C.; Stahly, G.P. Crystal Engineering Approach to Forming Cocrystals of Amine Hydrochlorides with Organic Acids. Molecular Complexes of Fluoxetine Hydrochloride with Benzoic, Succinic, and Fumaric Acids. J. Am. Chem. Soc. 2004, 126, 13335–13342. [Google Scholar] [CrossRef] [Green Version]
- Bis, J.A.; Zaworotko, M.J. The 2-Aminopyridinium-carboxylate Supramolecular Heterosynthon: A Robust Motif for Generation of Multiple-Component Crystals. Cryst. Growth Des. 2005, 5, 1169–1179. [Google Scholar] [CrossRef]
- Douroumis, D.; Ross, S.A.; Nokhodchi, A. Advanced methodologies for cocrystal synthesis. Adv. Drug Deliv. Rev. 2017, 117, 178–195. [Google Scholar] [CrossRef]
- Efthimiadou, E.K.; Katsaros, N.; Karaliota, A.; Psomas, G. Synthesis, characterization, antibacterial activity, and interaction with DNA of the vanadyl-enrofloxacin complex. Bioorg. Med. Chem. Lett. 2007, 17, 1238–1242. [Google Scholar] [CrossRef]
- Fan, J.; Sun, D.; Yu, H.; Kerwin, S.M.; Hurley, L.H. Self-Assembly of a Quinobenzoxazine-Mg2+ Complex on DNA: A New Paradigm for the Structure of a Drug-DNA Complex and Implications for the Structure of the Quinolone Bacterial Gyrase-DNA Complex. J. Med. Chem. 1995, 38, 408–424. [Google Scholar] [CrossRef]
- TerHune, T.N.; Skogerboe, T.L.; Shostrom, V.K.; Weigel, D.J. Comparison of pharmacokinetics of danofloxacin and enrofloxacin in calves challenged with Mannheimia haemolytica. Am. J. Vet. Res. 2005, 66, 342–349. [Google Scholar] [CrossRef]
- Barrón, D.; Irles, A.; Barbosa, J. Prediction of electrophoretic mobilities in non-aqueous capillary electrophoresis: Optimal separation of quinolones in acetonitrile–water media. J. Chromatogr. A 2000, 871, 367–380. [Google Scholar] [CrossRef]
- Lizondo, M.; Pons, M.; Gallardo, M.; Estelrich, J. Physicochemical properties of enrofloxacin. J. Pharm. Biomed. 1997, 15, 1845–1849. [Google Scholar] [CrossRef]
- Romañuk, C.B.; Manzo, R.H.; Linck, Y.G.; Chattah, A.K.; Monti, G.A.; Olivera, M.E. Characterization of the Solubility and Solid-State Properties of Saccharin Salts of Fluoroquinolones. J. Pharm. Sci. 2009, 10, 3788–3801. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, L.; Mei, X. Supramolecular structures and physicochemical properties of norfloxacin salts. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.O.; Manin, A.N.; Voronin, A.P.; Drozd, K.V.; Simagina, A.A.; Churakov, A.V.; Perlovich, G.L. Pharmaceutical salts of ciprofloxacin with dicarboxylic acids. Eur. J. Pharm. Sci. 2015, 77, 112–121. [Google Scholar] [CrossRef]
- Banerjee, R.; Bhatt, P.M.; Ravindra, N.V.; Desiraju, G.R. Saccharin Salts of Active Pharmaceutical Ingredients, Their Crystal Structures, and Increased Water Solubilities. Cryst. Growth Des. 2005, 5, 2299–2309. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. 2009, D65, 148–155. [Google Scholar]
- Glomme, A.; März, J.; Dressman, J.B. Comparison of a Miniaturized Shake-Flask Solubility Method with Automated Potentiometric Acid/Base Titrations and Calculated Solubilities. J. Pharm. Sci. 2005, 94, 1–16. [Google Scholar] [CrossRef]
- Shaibat, M.A.; Casabianca, L.B.; Wickramasinghe, N.P.; Guggenheim, S.; de Dios, A.C.; Ishii, Y. Characterization of Polymorphs and Solid-State Reactions for Paramagnetic Systems by13 C Solid-State NMR and ab Initio Calculations. J. Am. Chem. Soc. 2007, 129, 10968–10969. [Google Scholar] [CrossRef]
- Mesallati, H.; Umerska, A.; Tajber, L. Fluoroquinolone Amorphous Polymeric Salts and Dispersions for Veterinary Uses. Pharmaceutics 2019, 11, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löbmann, K.; Laitinen, R.; Grohganz, H.; Strachan, C.; Rades, T.; Gordon, K.C. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int. J. Pharm. 2013, 453, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Gunasekaran, S.; Anita, B. Spectral investigation and normal coordinate analysis of piperazine. Indian J. Pure Appl. Phys. 2008, 46, 833–838. [Google Scholar]
- Karanam, M.; Choudhury, A.R. Structural Landscape of Pure Enrofloxacin and Its Novel Salts: Enhanced Solubility for Better Pharmaceutical Applicability. Cryst. Growth Des. 2013, 13, 1626–1637. [Google Scholar] [CrossRef]
Crystal Parameters | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Empirical formula | C19H22FN3O3 | C23H31FN3O10.5 | C27H33FN4O6 | C29H42FN3O8 |
Formula weight | 359.39 | 536.51 | 528.57 | 579.65 |
Temperature/K | 150.03(12) | 150.00(10) | 150.00(10) | 150.00(10) |
Crystal system | monoclinic | triclinic | triclinic | triclinic |
Space group | ||||
a/Å | 13.9309(2) | 7.4444(4) | 8.4841(4) | 6.9755(2) |
b/Å | 6.87600(10) | 11.2932(6) | 12.1821(6) | 9.3315(4) |
c/Å | 18.5133(3) | 15.5835(9) | 13.6436(6) | 23.4431(9) |
α/° | 90 | 86.475(4) | 115.392(4) | 99.065(3) |
β/° | 100.9240(10) | 77.366(4) | 93.462(4) | 95.004(3) |
γ/° | 90 | 74.427(5) | 92.054(4) | 104.306(3) |
Volume/Å3 | 1741.23(5) | 1231.46(12) | 1268.59(11) | 1447.42(10) |
Z | 4 | 2 | 2 | 2 |
ρcalcg/cm3 | 1.371 | 1.447 | 1.384 | 1.330 |
μ/mm−1 | 0.839 | 1.023 | 0.861 | 0.841 |
F(000) | 760.0 | 566.0 | 560.0 | 620.0 |
Crystal size/mm3 | 0.7 × 0.4 × 0.4 | 0.2 × 0.02 × 0.01 | 0.4 × 0.3 × 0.25 | 0.25 × 0.15 × 0.03 |
Radiation | CuKα (λ = 1.54184) | CuKα (λ = 1.54184) | CuKα (λ = 1.54184) | CuKα (λ = 1.54178) |
2θ range for data collection/° | 7.314 to 146.554 | 8.128 to 148.07 | 7.198 to 134.982 | 7.704 to 137.998 |
Index ranges | −13 ≤ h ≤ 17, −8 ≤ k ≤ 5, −22 ≤ l ≤ 20 | −9 ≤ h ≤ 9, −14 ≤ k ≤ 11, −19 ≤ l ≤ 19 | −10 ≤ h ≤ 9, −14 ≤ k ≤ 14, −16 ≤ l ≤ 14 | −7 ≤ h ≤ 8, −11 ≤ k ≤ 11, −28 ≤ l ≤ 27 |
Reflections collected | 5229 | 8302 | 6853 | 10,171 |
Independent reflections | 3299 [Rint = 0.0297, Rsigma = 0.0325] | 4827 [Rint = 0.0317, Rsigma = 0.0427] | 4494 [Rint = 0.0339, Rsigma = 0.0366] | 5318 [Rint = 0.0262, Rsigma = 0.0340] |
Data/restraints/parameters | 3299/0/238 | 4827/0/369 | 4494/0/348 | 5318/72/462 |
Goodness-of-fit on F2 | 1.062 | 1.030 | 1.054 | 1.018 |
Final R indexes [I>=2σ (I)] | R1 = 0.0509, wR2 = 0.1325 | R1 = 0.0483, wR2 = 0.1236 | R1 = 0.0532, wR2 = 0.1475 | R1 = 0.0695, wR2 = 0.1736 |
Final R indexes [all data] | R1 = 0.0528, wR2 = 0.1355 | R1 = 0.0580, wR2 = 0.1307 | R1 = 0.0585, wR2 = 0.1531 | R1 = 0.0792, wR2 = 0.1838 |
Largest diff. peak/hole/e Å−3 | 0.25/−0.40 | 0.36/−0.42 | 0.76/−0.56 | 0.45/−0.49 |
CCDC | 2000796 | 2000797 | 2000798 | 2000799 |
D–H···A | D···A (Å) | H···A (Å) | D–H···A (Deg) |
---|---|---|---|
Compound 1 | |||
O1–H1···O3 | 2.5460(14) | 1.78 | 154 |
C2–H2···O2 | 2.7950(16) | 2.46 | 101 |
C8–H8A···O1 | 3.4690(16) | 2.56 | 157 |
C8–H8B···O3 | 3.2816(16) | 2.33 | 167 |
C9–H9···O3 | 3.2232(15) | 2.45 | 135 |
C15–H15B···F1 | 2.8895(15) | 2.24 | 123 |
Compound 2 | |||
O1–H1···O3 | 2.5182(19) | 1.76 | 153 |
N3–H3···O7 | 3.022(2) | 2.21 | 139 |
N3–H3···O9 | 2.835(2) | 1.99 | 142 |
O6–H6···O4 | 2.624(3) | 2.15 | 117 |
O6–H6···O11 | 3.051(12) | 2.37 | 141 |
O6–H6···O12 | 3.097(13) | 2.37 | 148 |
O7–H7···O5 | 2.610(2) | 1.80 | 171 |
O8–H8···O4 | 2.439(3) | 1.29(5) | 174(4) |
O10–H10A···O6 | 2.684(4) | 1.90 | 154 |
O10–H10B···O2 | 2.805(3) | 2.00 | 158 |
O11–H11A···O6 | 3.051(12) | 2.47 | 126 |
O11–H11A···O7 | 3.367(12) | 2.54 | 165 |
O11–H11B···O4 | 2.870(11) | 2.40 | 116 |
O11–H11B···O9 | 2.909(12) | 2.12 | 153 |
O12–H12A···O11 | 2.823(15) | 2.00 | 164 |
O12–H12A···O12 | 2.715(16) | 1.90 | 160 |
O12–H12B···O4 | 2.985(10) | 2.50 | 117 |
O12–H12B···O9 | 3.057(13) | 2.25 | 158 |
C2–H2···O2 | 2.836(2) | 2.53 | 100 |
C7–H7B···O2 | 3.567(3) | 2.60 | 175 |
C9–H9···O3 | 3.306(3) | 2.38 | 157 |
C10–H10···O3 | 3.411(3) | 2.51 | 163 |
C14–H14A···O8 | 3.325(2) | 2.39 | 162 |
C15–H15A···F1 | 2.872(2) | 2.22 | 123 |
C17–H17A···O1 | 3.165(2) | 2.25 | 156 |
C18–H18B···O6 | 3.015(3) | 2.55 | 109 |
C19–H19A···O7 | 3.343(3) | 2.56 | 139 |
C19–H19A···O11 | 3.194(13) | 2.46 | 133 |
C21–H21···O8 | 2.884(3) | 2.51 | 102 |
Compound 3 | |||
O1–H1···O3 | 2.536(2) | 1.77 | 154 |
N3–H3···O4 | 2.618(2) | 1.64 | 172 |
O6–H6···O5 | 2.761(3) | 1.94 | 178 |
C2–H2···O2 | 2.799(3) | 2.48 | 101 |
C8–H8B···O3 | 3.363(3) | 2.45 | 157 |
C14–H14B···O6 | 3.460(3) | 2.54 | 158 |
C15–H15A···F1 | 2.861(3) | 2.22 | 123 |
C16–H16A···O4 | 3.241(2) | 2.48 | 135 |
C17–H17A···O3 | 3.349(2) | 2.52 | 144 |
C18–H18B···O2 | 3.224(3) | 2.44 | 138 |
C23–H23···O4 | 2.792(3) | 2.46 | 101 |
Compound 4 | |||
O1–H1···O3 | 2.740(12) | 1.95 | 162 |
N3–H3···O6 | 2.667(3) | 1.74 | 155 |
O5–H5···O6 | 2.567(3) | 1.75 | 174 |
O8–H8···O7 | 2.731(6) | 1.94 | 162 |
C2–H2···O2 | 2.723(9) | 2.27 | 109 |
C7–H7A···F1 | 3.430(8) | 2.46 | 174 |
C8–H8A···O8 | 3.040(8) | 2.59 | 108 |
C9–H9···O3 | 3.347(7) | 2.57 | 137 |
C15–H15A···F1 | 2.882(3) | 2.26 | 121 |
C16–H16B···O1 | 3.358(10) | 2.44 | 158 |
C16–H16B···O1A | 3.435(8) | 2.49 | 166 |
C17–H17B···O4 | 3.320(3) | 2.39 | 161 |
C29–H29B···O1A | 3.203(10) | 2.53 | 127 |
Compound | Saturation Solubility a in Water (mg/mL) |
---|---|
enrofloxacin b | 0.14 |
1 | 0.14 |
2 | 8.53 |
3 | 56.83 |
4 | 8.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, H.; Sun, Y.-B.; Zhou, J.-W.; Xie, M.-J.; Lin, H.; Yong, Y.; Chen, L.-Z.; Fang, B.-H. Pharmaceutical Salts of Enrofloxacin with Organic Acids. Crystals 2020, 10, 646. https://doi.org/10.3390/cryst10080646
Pang H, Sun Y-B, Zhou J-W, Xie M-J, Lin H, Yong Y, Chen L-Z, Fang B-H. Pharmaceutical Salts of Enrofloxacin with Organic Acids. Crystals. 2020; 10(8):646. https://doi.org/10.3390/cryst10080646
Chicago/Turabian StylePang, Hong, Yu-Bin Sun, Jun-Wen Zhou, Meng-Juan Xie, Hao Lin, Yan Yong, Liang-Zhu Chen, and Bing-Hu Fang. 2020. "Pharmaceutical Salts of Enrofloxacin with Organic Acids" Crystals 10, no. 8: 646. https://doi.org/10.3390/cryst10080646
APA StylePang, H., Sun, Y. -B., Zhou, J. -W., Xie, M. -J., Lin, H., Yong, Y., Chen, L. -Z., & Fang, B. -H. (2020). Pharmaceutical Salts of Enrofloxacin with Organic Acids. Crystals, 10(8), 646. https://doi.org/10.3390/cryst10080646