Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD)
Abstract
:1. Introduction
2. Methodology
3. Materials and Methods
4. Results and Discussion
- Domain (1): 300–375 °C and 0.0003–0.003 s−1 with a peak efficiency of about 53% at 375 °C/0.0003 s−1.
- Domain (2): 375–450 °C and 0.0003–0.003 s−1 with a peak efficiency of about 58% at 405 °C/0.0003 s−1.
- Domain (3): 375–450 °C and 0.1–10 s−1 with a peak efficiency of about 35% at 425 °C/0.1 s−1.
5. Conclusions
- (1)
- Addition of 3% Ca to AZ31 refines the grain size and increases the volume fraction of (Mg,Al)2Ca intermetallic phase, which is distributed uniformly in the microstructure.
- (2)
- The processing map for AZ31-3Ca alloy exhibited three domains in the temperature strain rate ranges: (1) 300–375 °C and 0.0003–0.003 s−1, (2) 375–450 °C and 0.0003–0.003 s−1, and (3) 375–450 °C and 0.1–10 s−1.
- (3)
- In Domain (1), DRX occurs when basal + prismatic slip associated with dynamic recovery by climb controlled by lattice self-diffusion. In Domain (2), the plastic flow results in intercrystalline cracking promoted by grain boundary sliding initiating wedge cracks. In Domain (3) that occurs at higher strain rates, DRX occurs by non-basal slip with recovery by climb controlled by grain boundary self-diffusion. This recovery is promoted by fine grain size in the alloy.
- (4)
- The alloy exhibits some flow instability at lower temperatures and higher strain rates, and this manifests as adiabatic shear bands.
- (5)
- A comparison of processing maps on the Ca containing AZ31 alloys revealed that the hot deformation mechanisms have not significantly changed by increasing Ca addition except in AZ31-2Ca alloy where wedge cracking is avoided in Domain (2) due to the reduction of grain boundary sliding that is attributed to pinning by intermetallic particles.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kainer, K.U.; Dieringa, H.; Dietzel, W.; Hort, N.; Blawert, C. The use of magnesium alloys: Past, present and future. In Magnesium Technology in Global Age; Pekguleryuz, M.O., Mackenzie, L.W.F., Eds.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2006; pp. 3–19. [Google Scholar]
- Schilling, T.; Bauer, M.; Hartung, D.; Brandes, G.; Tudorache, I.; Cebotari, S.; Meyer, T.; Wacker, F.; Haverich, A.; Hassel, T. Stabilisation of a segment of autologous vascularised stomach as a patch for myocardial reconstruction with degradable magnesium alloy scaffolds in a swine model. Crystals 2020, 10, 438. [Google Scholar] [CrossRef]
- Vespa, G.; Mackenzie, L.W.F.; Verma, R.; Zarandi, F.; Essadiqi, E.; Yue, S. The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet. Mater. Sci. Eng. A 2008, 487, 243–250. [Google Scholar] [CrossRef]
- Masoudpanah, S.M.; Mahmudi, R. Effects of rare-earth elements and Ca additions on the microstructure and mechanical properties of AZ31 magnesium alloy processed by ECAP. Mater. Sci. Eng. A 2009, 526, 22–30. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Hamad, K.; Kim, J.-G. Ca-induced plasticity in magnesium alloy: EBSD measurements and VPSC calculations. Crystals 2020, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.P.; Prasad, Y.V.R.K.; Dharmendra, C.; Suresh, K.; Hort, N.; Dieringa, H. Review on hot working behavior and strength of calcium-containing magnesium alloys. Adv. Eng. Mat. 2018, 20, 1701102. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Kim, T.H.; Park, S.D.; Kim, Y.S.; Hamad, K.; Kim, J.-G. On the high formability of AZ31-0.5Ca magnesium alloy. Materials 2018, 11, 2201. [Google Scholar] [CrossRef] [Green Version]
- Chaudry, U.M.; Kim, Y.S.; Hamad, K. Effect of Ca addition on the room temperature formability of AZ31 magnesium alloy. Mater. Lett. 2019, 238, 305–308. [Google Scholar] [CrossRef]
- Sakai, N.; Funami, K.; Noda, M.; Mori, H. Effect of Ca addition on the high temperature deformation behavior of AZ31 magnesium alloy. In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing; Marquis, F., Ed.; Springer: Cham, Switzerland, 2013; pp. 1203–1209. [Google Scholar]
- Yim, C.D.; Kim, Y.M.; You, B.S. Effect of Ca addition on the corrosion resistance of gravity cast AZ31 magnesium alloy. Mater. Trans. 2007, 48, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Im, J.; Song, K.; Kwon, M.; Kim, S.K.; Kang, Y.-B.; Oh, S.H. Transmission electron microscopy and thermodynamic studies of CaO-added AZ31 Mg alloys. Acta Mater. 2013, 61, 3267–3277. [Google Scholar] [CrossRef]
- Kim, Y.M.; Yim, C.D.; You, B.S. Effect of the Ca content on the microstructural evolution of Ca containing AZ31 cast alloys. Met. Mater. Int. 2011, 17, 583–586. [Google Scholar] [CrossRef]
- Gupta, M.; Lai, M.O.; Soo, C.Y. Processing-microstructure-mechanical properties of an Al-Cu/SiC metal matrix composite synthesized using disintegrated melt deposition technique. Mater. Res. Bull. 1995, 30, 1525–1534. [Google Scholar] [CrossRef]
- Gupta, M.; Sharon, N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-49417-2. [Google Scholar]
- Hassan, S.F.; Gupta, M. Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J. Alloy. Compd. 2007, 429, 176–183. [Google Scholar] [CrossRef]
- Nguyen, Q.B.; Gupta, M. Improving compressive strength and oxidation resistance of AZ31B magnesium alloy by addition of nano-Al2O3 particulates and Ca. J. Compos. Mater. 2010, 44, 883–896. [Google Scholar] [CrossRef]
- Zhong, T.; Rao, K.P.; Prasad, Y.V.R.K.; Gupta, M. Processing maps, microstructure evolution and deformation mechanisms of extruded AZ31-DMD during hot uniaxial compression. Mater. Sci. Eng. A 2013, 559, 773–781. [Google Scholar] [CrossRef]
- Rao, K.P.; Zhong, T.; Prasad, Y.V.R.K.; Suresh, K.; Gupta, M. Hot working mechanisms in DMD-processed versus cast AZ31-1 wt.% Ca alloy. Mater. Sci. Eng. A 2015, 644, 184–193. [Google Scholar] [CrossRef]
- Rao, K.P.; Suresh, K.; Prasad, Y.V.R.K.; Hort, N.; Gupta, M. Enhancement of strength and hot workability of AZX312 magnesium alloy by disintegrated melt deposition (DMD) processing in contrast to permanent mold casting. Metals 2018, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Prasad, Y.V.R.K.; Rao, K.P.; Sasidhara, S. Hot Working Guide: A Compendium of Processing Maps, 2nd ed.; ASM International: Materials Park, OH, USA, 2015; ISBN 978-1-62708-091-0. [Google Scholar]
- Prasad, Y.V.R.K.; Seshacharyulu, T. Modeling of hot deformation for microstructural control. Inter. Mater. Rev. 1998, 44, 243–258. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K. Processing Maps—A Status Report. J. Mater. Eng. Perform. 2003, 12, 638–645. [Google Scholar] [CrossRef]
- Ziegler, H. Some extremum principles in irreversible thermodynamics with applications to continuum mechanics. In Progress in Solid Mechanics; John Wiley: New York, NY, USA, 1965; Volume 4, pp. 91–193. [Google Scholar]
- Jonas, J.J.; Sellars, C.M.; Tegart, W.M. Strength and structure under hot working conditions. Met. Rev. 1969, 14, 1–24. [Google Scholar] [CrossRef]
- Prasad, Y.V.R.K.; Rao, K.P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 °C. Mater. Sci. Eng. A 2005, 391, 141–150. [Google Scholar] [CrossRef]
- Böttger, B.; Eiken, J.; Ohno, M.; Klaus, G.; Fehlbier, M.; Schmid-Fetzer, R.; Steinbach, I.; Bührig-Polacz, A. Controlling microstructure in magnesium alloys: A combined thermodynamic, experimental and simulation approach. Adv. Eng. Mat. 2006, 8, 241–247. [Google Scholar] [CrossRef]
- Grobner, J.; Schmid-Fetzer, R. Key issues in a thermodynamic Mg alloy database. Metall. Mater. Trans. A 2013, 44, 2918–2934. [Google Scholar] [CrossRef]
- Laser, T.; Nurnberg, M.R.; Janz, A.; Hartig, C.; Letzig, D.; Schmid-Fetzer, R.; Bormann, R. The influence of manganese on the microstructure and mechanical properties of AZ31 gravity die cast alloys. Acta Mater. 2006, 54, 3033–3041. [Google Scholar] [CrossRef] [Green Version]
- Frost, H.J.; Ashby, M.F. Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics; Pergamon Press: Oxford, UK, 1982; p. 44. [Google Scholar]
- Morris, J.R.; Schraff, J.; Ho, K.M.; Turner, D.E.; Ye, Y.Y.; Yoo, M.H. Prediction of a {11-22} hcp stacking fault using a modified generalized stacking-fault calculation. Philos. Mag. A 1997, 76, 1065–1077. [Google Scholar] [CrossRef]
- Hilborn, R.C. Chaos and Non-Linear Dynamics; Oxford University Press: New York, NY, USA; Oxford, UK, 1994; p. 625. [Google Scholar]
Parameter | AZ31 (Ref. 17) | AZ31-1Ca (Ref. 18) | AZ31-2Ca (Ref. 19) | AZ31-3Ca (current work) | |
---|---|---|---|---|---|
Initial grain size, μm | (a) | 9 | 3 | 3 | 2–3 |
Phases in the microstructure | (b) | Mg17Al12 | (Mg,Al)2Ca Al8Mn5 | (Mg,Al)2Ca Al8Mn5 | (Mg,Al)2Ca Al8Mn5 |
Domain (1) | (c) | 300–350 °C 0.0003–0.01 s−1 | 300–375 °C 0.0003–0.01 s−1 | 300–375 °C 0.0003–0.03 s−1 | 300–375 °C 0.0003–0.003 s−1 |
(d) | 300 °C/0.0003 s−1; peak η: 39% | 300 °C/0.0003 s−1; peak η: 45% | 350 °C/0.001 s−1 peak η: 37% | 375 °C/0.0003 s−1; peak η: 53% | |
(e) | Qapp: 126 kJ/mole | Qapp: 112 kJ/mole | Qapp: 133 kJ/mole | Qapp: 158 kJ/mole | |
(f) | DRX: Basal slip + climb by Lattice self-diffusion | DRX: Basal slip + climb by lattice self-diffusion | DRX: prismatic slip + climb by lattice self-diffusion | DRX: Basal slip + prismatic slip + climb by lattice self-diffusion | |
Domain (2) | (c) | 350–450 °C 0.0003–0.01 s−1 | 400 – 450 °C 0.0003–0.01 s−1 | 375–450 °C 0.0003–0.03 s−1 | 375–450 °C 0.0003–0.003 s−1 |
(d) | 425 °C/0.0003 s−1; peak η: 46% | 450 °C/0.0003 s−1; peak η: 38% | 450 °C/0.0003 s−1; peak η: 48% | 405 °C/0.0003 s−1; peak η: 58% | |
(e) | Qapp: 144 kJ/mole | Qapp: 166 kJ/mole | Qapp: 192 kJ/mole | Qapp: 215 kJ/mole | |
(f) | Wedge cracking | Wedge cracking | Second-order pyramidal slip +cross slip | Grain boundary cracking | |
Domain (3) | (c) | 350–435 °C 1–10 s−1 | 325–390 °C 0.3–10 s−1 | 375–450 °C 0.3–10 s−1 | 375–450 °C 0.1–10 s−1 |
(d) | 400 °C/10 s−1; peak η: 26% | 350 °C/10 s−1; peak η: 32% | 400 °C/10 s−1; peak η: 38% | 425 °C/0.1 s−1; peak η: 35% | |
(e) | Qapp: 127 kJ/mole | Qapp: 87 kJ/mole | Qapp: 166 kJ/mole | Qapp: 163 kJ/mole | |
(f) | DRX: climb by grain boundary self-diffusion | DRX: climb by grain boundary self-diffusion | DRX: climb by grain boundary self-diffusion | DRX: climb by grain boundary self-diffusion |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, K.P.; Suresh, K.; Prasad, Y.V.R.K.; Gupta, M. Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD). Crystals 2020, 10, 647. https://doi.org/10.3390/cryst10080647
Rao KP, Suresh K, Prasad YVRK, Gupta M. Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD). Crystals. 2020; 10(8):647. https://doi.org/10.3390/cryst10080647
Chicago/Turabian StyleRao, Kamineni Pitcheswara, Kalidass Suresh, Yellapregada Venkata Rama Krishna Prasad, and Manoj Gupta. 2020. "Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD)" Crystals 10, no. 8: 647. https://doi.org/10.3390/cryst10080647
APA StyleRao, K. P., Suresh, K., Prasad, Y. V. R. K., & Gupta, M. (2020). Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD). Crystals, 10(8), 647. https://doi.org/10.3390/cryst10080647