Structural and Electric Properties of MnO2-Doped KNN-LT Lead-Free Piezoelectric Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jaeger, R.E.; Egerton, L. Hot Pressing of Potassium-Sodium Niobates. J. Am. Ceram. Soc. 1962, 45, 209–213. [Google Scholar] [CrossRef]
- Guo, Y.; Kakimoto, K.; Ohsato, H. Structure and Electrical Properties of Lead-Free(Na0.5K0.5)NbO3-BaTiO3 Ceramics. Jpn. J. Appl. Phys. 2004, 43, 6662–6666. [Google Scholar] [CrossRef]
- Choi, C.H.; Ahn, C.W.; Nahm, S.; Hong, J.O.; Lee, J.S. (1−x)BaTiO3-x(Na0.5K0.5)NbO3 ceramics for multilayer ceramic capacitors. Appl. Phys. Lett. 2007, 90, 132905. [Google Scholar] [CrossRef]
- Guo, Y.; Kakimoto, K.I.; Ohsato, H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 2004, 85, 4121–4123. [Google Scholar] [CrossRef]
- Du, J.; Zheng, L.; Xu, Z. Properties of B-site non-stoichiometric (K0.5Na0.5)(Nb0.9Ta0.1)1+xO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 2013, 25, 1085–1088. [Google Scholar] [CrossRef]
- Mgbemere, H.E.; Schneider, G.A.; Stegk, T.A. Effect of Antimony Substitution for Niobium on the Crystal Structure, Piezoelectric and Dielectric Properties of K0.5Na0.5NbO3 Ceramics. Funct. Mater. Lett. 2010, 3, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Zuo, R.; Fu, J.; Su, S.; Fang, X.; Cao, J.L. Electrical Properties of Manganese Modified Sodium Potassium Lithium Niobate Lead-free Piezoelectric Ceramics. J. Mater. Sci. Mater. Electron. 2009, 20, 212–216. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, J.; Tan, Y.; Yao, W.; Wang, C.; Zhang, S. Domain configuration and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 ceramics. J. Eur. Ceram. Soc. 2014, 34, 4177–4184. [Google Scholar] [CrossRef]
- Irle, E.; Blachnik, R.; Gather, B. The phase diagrams of Na2O and K2O with Nb2O5 and the ternary system Nb2O5-Na2O-Yb2O3. Thermochim. Acta 1991, 157–169. [Google Scholar] [CrossRef]
- Rubiomarcos, F.; Ochoa, P.; Fernandez, J.F. Sintering and properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics. J. Eur. Ceram. Soc. 2007, 27, 4125–4129. [Google Scholar] [CrossRef]
- Mgbemere, H.E.; Hinterstein, M.; Schneider, G.A. Electrical and structural characterization of (KxNa1−x)NbO3 ceramics modified with Li and Ta. J. Appl. Crystallogr. 2011, 44, 1080–1089. [Google Scholar] [CrossRef] [Green Version]
- Mgbemere, H.E.; Hinterstein, M.; Schneider, G.A. Structural phase transitions and electrical properties of (KxNa1-x)NbO3-based ceramics modified with Mn. J. Eur. Ceram. Soc. 2012, 32, 4341–4352. [Google Scholar] [CrossRef]
- Rafiq, M.A.; Tkach, A.; Costa, E.; Vilarinho, P.M. Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 2015, 17, 24403–24411. [Google Scholar] [CrossRef] [PubMed]
- He, L.X.; Li, C.E. Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 2000, 35, 2477–2480. [Google Scholar] [CrossRef]
- Galassi, C.; Roncari, E.; Capiani, C.; Craciun, F. Processing and characterization of high Qm ferroelectric ceramics. J. Eur. Ceram. Soc. 1999, 19, 1237–1241. [Google Scholar] [CrossRef]
- Yu, C.S.; Hsieh, H.L. Piezoelectric properties of Pb(Ni1/3,Sb2/3)O3-PbTiO3-PbZrO3 ceramics modified with MnO2 additive. J. Eur. Ceram. Soc. 2005, 25, 2425–2427. [Google Scholar] [CrossRef]
- Wang, X.; Gu, M.; Yang, B. Hall effect and dielectric properties of Mn-doped barium titanate. Microelectron. Eng. 2003, 66, 855–859. [Google Scholar] [CrossRef]
- Tkach, A.; Vilarinho, P.M.; Kholkin, A.L. Structure–microstructure–dielectric tunability relationship in Mn-doped strontium titanate ceramics. Acta. Mater. 2005, 53, 5061–5069. [Google Scholar] [CrossRef]
- Feng, Z.; Ren, X. Aging Effect and Large Recoverable Electrostrain in Mn-Doped KNbO3-Based Ferroelectrics. Appl. Phys. Lett. 2007, 91, 032904. [Google Scholar] [CrossRef]
- Matsumoto, K.; Hiruma, Y.; Nagata, H. Electric-field-induced strain in Mn-doped KNbO3 ferroelectric ceramics. Ceram. Int. 2008, 34, 787–791. [Google Scholar] [CrossRef]
- Ferreira, P.; Castro, A.; Vilarinho, P.M. Electron Microscopy Study of Porous and Co Functionalized BaTiO3 Thin Films. Microsc. Microanal. 2012, 18, 115–116. [Google Scholar] [CrossRef] [Green Version]
- Kizaki, Y.; Noguchi, Y.; Miyayama, M. Defect control for low leakage current in K0.5Na0.5NbO3 single crystals. Appl. Phys. Lett. 2006, 89, 142910. [Google Scholar] [CrossRef]
- Mgbemere, H.E.; Herber, R.P.; Schneider, G.A. Effect of MnO2 on the dielectric and piezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. J. Eur. Ceram. Soc. 2009, 29, 1729–1733. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Tsai, C.C.; Liou, Y.C. Investigation of CuO-doped NKN ceramics with high mechanical quality factor synthesized by a B-site oxide precursor method. J. Am. Ceram. Soc. 2011, 95, 1011–1017. [Google Scholar] [CrossRef]
- Zhang, S.T.; Kounga, A.B.; Aulbach, E. Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties. J. Appl. Phys. 2008, 103, 034107. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
xmol% MnO2 | 0.0 | 0.1 | 0.2 | 0.3 |
Sintering temperature (°C) | 1178 | 1126 | 1128 | 1132 |
xmol% MnO2 | 0.0 | 0.1 | 0.2 | 0.3 |
---|---|---|---|---|
a (Å) | 3.9998 | 3.9961 | 3.9943 | 3.9925 |
b (Å) | 3.9785 | 3.9765 | 3.9735 | 3.9713 |
c (Å) | 3.9929 | 3.9885 | 3.9814 | 3.9721 |
Vol (Å3) | 63.54 | 63.38 | 63.19 | 62.98 |
xmol% MnO2 | d33 (pC/N) | kp (%) | εr (1kHz) | Pr (μC/cm2) | Q11 (109) |
---|---|---|---|---|---|
0.0 | 165 | 36.3 | 74.95 | 13.66 | 9.65 |
0.1 | 251 | 29.5 | 839.7 | 20.59 | 0.87 |
0.2 | 170 | 35.6 | 1302 | 21.85 | 0.36 |
0.3 | 197 | 29.4 | 1214 | 21.97 | 0.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Wang, J.; Zhang, C.; Ma, H.; Bai, C.; Liu, D.; Wu, F.; Yang, B. Structural and Electric Properties of MnO2-Doped KNN-LT Lead-Free Piezoelectric Ceramics. Crystals 2020, 10, 705. https://doi.org/10.3390/cryst10080705
Deng Y, Wang J, Zhang C, Ma H, Bai C, Liu D, Wu F, Yang B. Structural and Electric Properties of MnO2-Doped KNN-LT Lead-Free Piezoelectric Ceramics. Crystals. 2020; 10(8):705. https://doi.org/10.3390/cryst10080705
Chicago/Turabian StyleDeng, Yunfeng, Junjun Wang, Chunxiao Zhang, Hui Ma, Chungeng Bai, Danqing Liu, Fengmin Wu, and Bin Yang. 2020. "Structural and Electric Properties of MnO2-Doped KNN-LT Lead-Free Piezoelectric Ceramics" Crystals 10, no. 8: 705. https://doi.org/10.3390/cryst10080705
APA StyleDeng, Y., Wang, J., Zhang, C., Ma, H., Bai, C., Liu, D., Wu, F., & Yang, B. (2020). Structural and Electric Properties of MnO2-Doped KNN-LT Lead-Free Piezoelectric Ceramics. Crystals, 10(8), 705. https://doi.org/10.3390/cryst10080705