The Sensitivity of the Pair-Angle Distribution Function to Protein Structure
Abstract
:1. Introduction
2. Background on the PADF Technique
3. Results
3.1. Correlations from Atomic Models
3.1.1. Disordered Polypeptide
3.1.2. Alpha Helices
3.2. q-Space Correlations from the Structure Factors
3.3. PADF Calculations Converted from the Q-Space Correlations Functions
3.4. A Test Case: NoIR from Sinorhizobium fredii
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PADF | Pair-angle distribution function |
Pair-distribution function | |
PDB | Protein Data Bank |
XCCA | X-ray cross-correlation analysis |
SAXS | Small-angle X-ray scattering |
XFEL | X-ray free-electron laser |
cryo-EM | Cryo-electron microscopy |
NMR | Nuclear magnetic resonance |
Appendix A. Definitions of the Modified N-Body Correlation Functions
References
- Lappano, R.; Maggiolini, M. G protein-coupled receptors: Novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 2011, 10, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Cournia, Z.; Allen, T.W.; Andricioaei, I.; Antonny, B.; Baum, D.; Brannigan, G.; Buchete, N.V.; Deckman, J.T.; Delemotte, L.; del Val, C.; et al. Membrane protein structure, function, and dynamics: A perspective from experiments and theory. J. Membr. Biol. 2015, 248, 611–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharom, F.J. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008, 9, 105–127. [Google Scholar] [CrossRef]
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The Protein Data Bank. Acta Crystallogr. Sect. D Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Kirkwood, J.; Hargreaves, D.; O’Keefe, S.; Wilson, J. Analysis of crystallization data in the Protein Data Bank. Acta Crystallogr. Sect. F 2015, 71, 1228–1234. [Google Scholar] [CrossRef] [Green Version]
- Beale, J.H. Macromolecular X-ray crystallography: Soon to be a road less travelled? Acta Crystallogr. Sect. D Struct. Biol. 2020, 76, 400–405. [Google Scholar] [CrossRef]
- Duarte, J.M.; Srebniak, A.; Schärer, M.A.; Capitani, G. Protein interface classification by evolutionary analysis. BMC Bioinform. 2012, 13, 334. [Google Scholar] [CrossRef] [Green Version]
- Baskaran, K.; Duarte, J.M.; Biyani, N.; Bliven, S.; Capitani, G. A PDB-wide, evolution-based assessment of protein-protein interfaces. BMC Struct. Biol. 2014, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Wüthrich, K. The way to NMR structures of proteins. Nat. Struct. Biol. 2001, 8, 923–925. [Google Scholar] [CrossRef]
- Ishima, R.; Torchia, D.A. Protein dynamics from NMR. Nat. Struct. Biol. 2000, 7, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, M. A lipid’s eye view of membrane protein crystallization in mesophases. Curr. Opin. Struct. Biol. 2000, 10, 486–497. [Google Scholar] [CrossRef]
- Johansson, L.C.; Arnlund, D.; White, T.A.; Katona, G.; DePonte, D.P.; Weierstall, U.; Doak, R.B.; Shoeman, R.L.; Lomb, L.; Malmerberg, E.; et al. Lipidic phase membrane protein serial femtosecond crystallography. Nat. Methods 2012, 9, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Structural genomics for membrane proteins. Cell. Mol. Life Sci. CMLS 2006, 63, 2597–2607. [Google Scholar] [CrossRef]
- Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 2008, 18, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.M. A beginner’s guide to radiation damage. J. Synchrotron Radiat. 2009, 16, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Svergun, D.I.; Koch, M.H.J. Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 2003, 66, 1735–1782. [Google Scholar] [CrossRef]
- Levantino, M.; Yorke, B.A.; Monteiro, D.C.F.; Cammarata, M.; Pearson, A.R. Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr. Opin. Struct. Biol. 2015, 35, 41–48. [Google Scholar] [CrossRef]
- Chapman, H.N.; Caleman, C.; Timneanu, N. Diffraction before destruction. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130313. [Google Scholar] [CrossRef] [Green Version]
- Nogly, P.; James, D.; Wang, D.; White, T.A.; Zatsepin, N.; Shilova, A.; Nelson, G.; Liu, H.; Johansson, L.; Heymann, M.; et al. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2015, 2, 168–176. [Google Scholar] [CrossRef]
- Botha, S.; Nass, K.; Barends, T.R.M.; Kabsch, W.; Latz, B.; Dworkowski, F.; Foucar, L.; Panepucci, E.; Wang, M.; Shoeman, R.L.; et al. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 387–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogly, P.; Panneels, V.; Nelson, G.; Gati, C.; Kimura, T.; Milne, C.; Milathianaki, D.; Kubo, M.; Wu, W.; Conrad, C.; et al. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nat. Commun. 2016, 7, 12314. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.C.; Mehrabi, P.; Müller-Werkmeister, H.M.; Tellkamp, F.; Jha, A.; Stuart, W.; Persch, E.; De Gasparo, R.; Diederich, F.; Pai, E.F.; et al. The hit-and-return system enables efficient time-resolved serial synchrotron crystallography. Nat. Methods 2018, 15, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenboer, J.; Basu, S.; Zatsepin, N.; Pande, K.; Milathianaki, D.; Frank, M.; Hunter, M.; Boutet, S.; Williams, G.J.; Koglin, J.E.; et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 2014, 346, 1242–1246. [Google Scholar] [CrossRef] [Green Version]
- Young, I.D.; Ibrahim, M.; Chatterjee, R.; Gul, S.; Fuller, F.D.; Koroidov, S.; Brewster, A.S.; Tran, R.; Alonso-Mori, R.; Kroll, T.; et al. Structure of photosystem II and substrate binding at room temperature. Nature 2016, 540, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Kam, Z. Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules 1977, 10, 927–934. [Google Scholar] [CrossRef]
- Saldin, D.K.; Poon, H.C.; Shneerson, V.L.; Howells, M.; Chapman, H.N.; Kirian, R.A.; Schmidt, K.E.; Spence, J.C.H. Beyond small-angle X-ray scattering: Exploiting angular correlations. Phys. Rev. B 2010, 81, 174105. [Google Scholar] [CrossRef] [Green Version]
- Kirian, R.A. Structure determination through correlated fluctuations in X-ray scattering. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 223001. [Google Scholar] [CrossRef]
- Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A.D.; Duri, A.; Zontone, F.; Grübel, G.; Dosch, H. X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter. Proc. Natl. Acad. Sci. USA 2009, 106, 11511–11514. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.V.; Bøjesen, E.D.; Petersen, T.C.; Hu, C.; Biggs, M.J.; Weyland, M.; Liu, A.C.Y. Detection of ring and adatom defects in activated disordered carbon via fluctuation nanobeam electron diffraction. Small 2020, 16, 2000828. [Google Scholar] [CrossRef]
- Martin, A.V.; Kozlov, A.; Berntsen, P.; Roque, F.G.; Flueckiger, L.; Saha, S.; Greaves, T.L.; Conn, C.E.; Hawley, A.M.; Ryan, T.M.; et al. Fluctuation X-ray diffraction reveals three-dimensional nanostructure and disorder in self-assembled lipid phases. Commun. Mater. 2020, 1, 40. [Google Scholar] [CrossRef]
- Kurta, R.P.; Donatelli, J.J.; Yoon, C.H.; Berntsen, P.; Bielecki, J.; Daurer, B.J.; Demirci, H.; Fromme, P.; Hantke, M.F.; Maia, F.R.; et al. Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses. Phys. Rev. Lett. 2017, 119, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lokteva, I.; Koof, M.; Walther, M.; Grübel, G.; Lehmkühler, F. Monitoring nanocrystal self-assembly in real time using in situ small-angle X-ray scattering. Small 2019, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zaluzhnyy, I.A.; Kurta, R.P.; Menushenkov, A.P.; Ostrovskii, B.I.; Vartanyants, I.A. Direct reconstruction of the two-dimensional pair distribution function in partially ordered systems with angular correlations. Phys. Rev. E 2016, 94, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurta, R.P.; Altarelli, M.; Vartanyants, I.A. Structural Analysis by X-ray Intensity Angular Cross Correlations. In Advances in Chemical Physics; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2016; Volume 161, pp. 1–39. [Google Scholar]
- Zaluzhnyy, I.A.; Kurta, R.P.; Scheele, M.; Schreiber, F.; Ostrovskii, B.I.; Vartanyants, I.A. Angular X-ray Cross-Correlation Analysis (AXCCA): Basic concepts and recent applications to soft matter and nanomaterials. Materials 2019, 12, 3464. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.V. Orientational order of liquids and glasses via fluctuation diffraction. IUCrJ 2017, 4, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Donatelli, J.J.; Zwart, P.H.; Sethian, J.A. Iterative phasing for fluctuation X-ray scattering. Proc. Natl. Acad. Sci. USA 2015, 112, 10286–10291. [Google Scholar] [CrossRef] [Green Version]
- Saldin, D.K.; Shneerson, V.L.; Fung, R.; Ourmazd, A. Structure of isolated biomolecules obtained from ultrashort X-ray pulses: Exploiting the symmetry of random orientations. J. Phys. Condens. Matter 2009, 21, 134014. [Google Scholar] [CrossRef] [Green Version]
- Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J.D.; Coppola, N.; Doak, R.B.; Epp, S.W.; et al. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nat. Commun. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Virtanen, J.J.; Makowski, L.; Sosnick, T.R.; Freed, K.F. Modeling the hydration layer around proteins: HyPred. Biophys. J. 2010, 99, 1611–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovejoy, B.; Choe, S.; Cascio, D.; McRorie, D.K.; DeGrado, W.F.; Eisenberg, D. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 1993, 259, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Krishnan, H.B.; Jez, J.M. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proc. Natl. Acad. Sci. USA 2014, 111, 6509–6514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riback, J.A.; Bowman, M.A.; Zmyslowski, A.M.; Knoverek, C.R.; Jumper, J.M.; Hinshaw, J.R.; Kaye, E.B.; Freed, K.F.; Clark, P.L.; Sosnick, T.R. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 2017, 358, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Kubelka, J.; Hofrichter, J.; Eaton, W.A. The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 2004, 14, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Eastwood, M.P.; Bank, J.A.; Jumper, J.M.; Salmon, J.K.; Shan, Y.; et al. Atomic-level characterization of the structural dynamics of proteins. Science 2010, 330, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.M.; Mohammed, O.F.; Jas, G.S.; Zewail, A.H. Speed limit of protein folding evidenced in secondary structure dynamics. Proc. Natl. Acad. Sci. USA 2011, 108, 16622–16627. [Google Scholar] [CrossRef] [Green Version]
- Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.M.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P.; Steinbrener, J.; Shoeman, R.L.; et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 2012, 337, 362–364. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, P.; Binns, J.; Greaves, T.L.; Martin, A.V. The Sensitivity of the Pair-Angle Distribution Function to Protein Structure. Crystals 2020, 10, 724. https://doi.org/10.3390/cryst10090724
Adams P, Binns J, Greaves TL, Martin AV. The Sensitivity of the Pair-Angle Distribution Function to Protein Structure. Crystals. 2020; 10(9):724. https://doi.org/10.3390/cryst10090724
Chicago/Turabian StyleAdams, Patrick, Jack Binns, Tamar L. Greaves, and Andrew V. Martin. 2020. "The Sensitivity of the Pair-Angle Distribution Function to Protein Structure" Crystals 10, no. 9: 724. https://doi.org/10.3390/cryst10090724
APA StyleAdams, P., Binns, J., Greaves, T. L., & Martin, A. V. (2020). The Sensitivity of the Pair-Angle Distribution Function to Protein Structure. Crystals, 10(9), 724. https://doi.org/10.3390/cryst10090724