Formation of Three-Dimensional Electronic Networks Using Axially Ligated Metal Phthalocyanines as Stable Neutral Radicals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. X-ray Crystal Structure Determination
2.3. Measurements
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, I.; Jo, Y.; Ko, J.; Kim, D.-Y.; Sohn, D.; Joo, Y. Making nonconjugated small-molecule organic radicals conduct. Nano Lett. 2020, 20, 5376–5382. [Google Scholar] [CrossRef] [PubMed]
- Jérome, D. Organic conductors: From charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5591. [Google Scholar] [CrossRef] [PubMed]
- Saito, G.; Yoshida, Y. Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials. Bull. Chem. Soc. Jpn. 2007, 80, 1–137. [Google Scholar] [CrossRef]
- Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors, 2nd ed.; Springer: Berlin, Germany, 1998. [Google Scholar]
- Wong, J.W.L.; Mailman, A.; Lekin, K.; Winter, S.M.; Yong, W.; Zhao, J.; Garimella, S.V.; Tse, J.S.; Secco, R.A.; Desgreniers, S.; et al. Pressure induced phase transitions and metallization of a neutral radical conductor. J. Am. Chem. Soc. 2014, 136, 1070–1081. [Google Scholar] [CrossRef]
- Tian, D.; Winter, S.M.; Mailman, A.; Wong, J.W.L.; Yong, W.; Yamaguchi, H.; Jia, Y.; Tse, J.S.; Desgreniers, S.; Secco, R.A.; et al. The metallic state in neutral radical conductors: Dimensionality, pressure and multiple orbital effects. J. Am. Chem. Soc. 2015, 137, 14136–14148. [Google Scholar] [CrossRef] [Green Version]
- Souto, M.; Cui, H.B.; Peña-Álvarez, M.; Baonza, V.G.; Jeschke, H.O.; Tomic, M.; Valenti, R.; Blasi, D.; Ratera, I.; Rovira, C.; et al. Pressure-induced conductivity in a neutral nonplanar spin-localized radical. J. Am. Chem. Soc. 2016, 138, 11517–11525. [Google Scholar] [CrossRef] [Green Version]
- Souto, M.; Gullo, M.C.; Cui, H.B.; Casati, N.; Montisci, F.; Jeschke, H.O.; Valenti, R.; Ratera, I.; Rovira, C.; Veciana, J. Role of the open-shell character on the pressure-induced conductivity of an organic donor-acceptor radical dyad. Chem. Eur. J. 2018, 24, 5500–5505. [Google Scholar] [CrossRef]
- Isono, T.; Kamo, H.; Ueda, A.; Takahashi, K.; Nakao, A.; Kumai, R.; Nakao, H.; Kobayashi, K.; Murakami, Y.; Mori, H. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 2013, 4, 1344. [Google Scholar] [CrossRef] [Green Version]
- Inabe, T.; Maruyama, Y. Multi-dimensional stacking structure in phthalocyanine-based electrical conductors, K[Co(phthalocyaninato)(CN)2]2·5CH3CN and Co(phthalocyaninato)(CN)2·2H2O. Bull. Chem. Soc. Jpn. 1990, 63, 2273–2280. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Naito, T.; Inabe, T.; Akutagawa, T.; Nakamura, T. A highly conducting partially oxidized salt of axially substituted phthalocyanine. Structure and physical properties of TPP[Co(Pc)(CN)2]2 {TPP = tetraphenylphosphonium, [Co(Pc)(CN)2] = dicyano(phthalocyaninato)cobalt(III)}. J. Mater. Chem. 1998, 8, 1567–1570. [Google Scholar] [CrossRef]
- Inabe, T.; Tajima, H. Phthalocyanines–Versatile components of molecular conductors. Chem. Rev. 2004, 104, 5503–5533. [Google Scholar] [CrossRef]
- Inabe, T. Design of functional molecular crystal by controlling intermolecular interactions. Bull. Chem. Soc. Jpn. 2005, 78, 1373–1383. [Google Scholar] [CrossRef]
- Inabe, T.; Ishikawa, M.; Asari, T.; Hasegawa, H.; Fujita, A.; Matsumura, N.; Naito, T.; Matsuda, M.; Tajima, H. Phthalocyanine conductors: New trend for crystal and functionality design. Mol. Cryst. Liq. Cryst. 2006, 455, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.F.; Canham, G.W.R.; Lever, A.B.P. Higher oxidation level phthalocyanine complexes of chromium, iron, cobalt, and zinc. Phthalocyanine radical species. Inorg. Chem. 1975, 14, 461–468. [Google Scholar] [CrossRef]
- Yu, D.E.C. Synthesis of Axially-Ligated Metallophthalocaynine Molecular Conductors and the Chemical and Physical Factors Affecting Their Solid-State Properties. Ph.D. Thesis, Hokkaido University, Sapporo, Japan, 2008. [Google Scholar]
- Hedtmann-Rein, C.; Hanack, M.; Peters, K.; Peters, E.-M.; Schnering, H.G. Synthesis and properties of (phthlaocyaninato) and (tetrabenzoporphyrinato)cobalt(III) thiocyanate and isothiocyanate compounds. Crystal and molecular structures of (phthalocyaninato)(pyridine)(thiocyanato)cobalt(III). Inorg. Chem. 1987, 26, 2647–2651. [Google Scholar] [CrossRef]
- Sir 2019. Available online: http://www.ba.ic.cnr.it/softwareic/sir/ (accessed on 25 May 2020).
- Burla, M.C.; Caliandro, R.; Carrozzini, B.; Cuocci, C.; Mallamo, M.; Mazzone, A.; Polidori, G. Crystal structure determination and refinement via SIR 2014. J. Appl. Cryst. 2015, 48, 306–309. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Matsuda, M.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H.; Otsuka, T.; Awaga, K.; Narymbetov, B.; Kobayashi, H. A one-dimensional macrocyclic π-ligand conductor carrying a magnetic center. Structure and electrical, optical and magnetic properties of TPP[Fe(Pc)(CN)2]2 {TPP = tetraphenylphosphonium and [Fe(Pc)(CN)2] = dicyano(phthalocyaninato)iron(III)}. J. Mater. Chem. 2000, 10, 631–636. [Google Scholar] [CrossRef]
- Matsuda, M.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H. Structure and electrical and magnetic properties of (PTMA)x[M(Pc)(CN)2]·y(solvent) (PTMA = phenyltrimethylammonium and [M(Pc)(CN)2] = dicyano(phthalocyaninato)MIII with M = Co and Fe). Partial oxidation by partial solvent occupation of the cation site. J. Mater. Chem. 2001, 11, 2493–2497. [Google Scholar] [CrossRef]
- Matsuda, M.; Asari, T.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H. Structure and physical properties of low dimensional molecular conductors, [PXX][FeIII(Pc)(CN)2] and [PXX][CoIII(Pc)(CN)2] (PXX = peri-xanthenoxanthene, Pc = phthalocyaninato). Bull. Chem. Soc. Jpn. 2003, 76, 1935–1940. [Google Scholar] [CrossRef]
- Behnisch, R.; Hanack, M. Cyclic voltammetric and electrocrystallization studies of axially substituted biscyanophthalocyaninato metal complexes and related compounds. Synth. Met. 1990, 36, 387–397. [Google Scholar] [CrossRef]
- Mori, T. Principles that govern electronic transport in organic conductors and transistors. Bull. Chem. Soc. Jpn. 2016, 89, 973–986. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Kanda, A.; Murakawa, H.; Matsuda, M.; Inabe, T.; Tajima, H.; Hanasaki, N. Effect of localized spin concentration on giant magnetoresistance in molecular conductors TPP[FexCo1–x(Pc)(CN)2]2. J. Phys. Soc. Jpn. 2016, 85, 024713. [Google Scholar] [CrossRef]
- Morimoto, K.; Inabe, T. Molecular conductors based on axially substituted phthalocyanine neutral radicals. Mol. Cryst. Liq. Cryst. 1996, 284, 291–300. [Google Scholar] [CrossRef]
CoIII(Pc)Cl2·THF | FeIII(Pc)Cl2·THF | |
---|---|---|
Space Group | P21/n | P21/n |
a (Å) | 8.2526(2) | 8.2062(1) |
b (Å) | 15.4184(6) | 15.4115(1) |
c (Å) | 11.8762(4) | 11.9043(1) |
β(°) | 92.996(3) | 92.2238(9) |
Volume (Å3) | 1509.08(9) | 1503.15(2) |
Temperature (K) | 298 | 298 |
CCDC | 2013803 | 2013804 |
[100] with Type A | [11] with Type B | [1] with Type B | ||
---|---|---|---|---|
CoIII(Pc)Cl2·THF | Overlap Integral | 2.0 × 10−3 | 0.9 × 10−3 | 0.9 × 10−3 |
Interplanar Distance (Å) | 3.49, 3.54 | 3.43 | 3.44 | |
FeIII(Pc)Cl2·THF | Overlap Integral | 2.3 × 10−3 | 0.9 × 10−3 | 0.9 × 10−3 |
Interplanar Distance (Å) | 3.49, 3.54 | 3.42 | 3.43 |
with Type A | with Type B | |
---|---|---|
CoIII(Pc)Cl2·THF | 2.0 × 10−3 | 0.9 × 10−3 |
CoIII(Pc)(CN)2·H2O | 5.7 × 10−3 | 1.7 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, R.; Matsuda, M. Formation of Three-Dimensional Electronic Networks Using Axially Ligated Metal Phthalocyanines as Stable Neutral Radicals. Crystals 2020, 10, 747. https://doi.org/10.3390/cryst10090747
Sato R, Matsuda M. Formation of Three-Dimensional Electronic Networks Using Axially Ligated Metal Phthalocyanines as Stable Neutral Radicals. Crystals. 2020; 10(9):747. https://doi.org/10.3390/cryst10090747
Chicago/Turabian StyleSato, Ryoya, and Masaki Matsuda. 2020. "Formation of Three-Dimensional Electronic Networks Using Axially Ligated Metal Phthalocyanines as Stable Neutral Radicals" Crystals 10, no. 9: 747. https://doi.org/10.3390/cryst10090747
APA StyleSato, R., & Matsuda, M. (2020). Formation of Three-Dimensional Electronic Networks Using Axially Ligated Metal Phthalocyanines as Stable Neutral Radicals. Crystals, 10(9), 747. https://doi.org/10.3390/cryst10090747