The Crystallization Behaviors of SiO2-Al2O3-CaO-MgO-TiO2 Glass-Ceramic Systems
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sample Preparation
2.2. Analysis Methods
3. Results and Discussion
3.1. Crystallization Kinetics Analysis
3.2. Crystal Phase and Morphology Analysis
3.3. Hardness Performance Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, H.F.; Zhang, C.X.; Qi, Y.H.; Dai, X.T.; Yan, D.L. Present situation and development trend of blast furnace slag treatment. Iron Steel 2007, 42, 84–87. [Google Scholar]
- Zhen, Y.L.; Zhang, G.H.; Chou, K.C. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag. High Temp. Mater. Process.-Isr. 2016, 35, 309–319. [Google Scholar] [CrossRef]
- Lei, Y.; Sun, L.; Ma, W.; Ma, X.; Wu, J.; Li, S.; Morita, K. An approach to employ titanium-bearing blast-furnace slag to prepare Ti and Al–Si alloys. J. Alloy Compd. 2018, 769, 983–990. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Lu, Z. Study on property of composite cement prepared by titanium slag-CFBC fly ash as cement admixture. Cement 2016, 6, 2. [Google Scholar]
- Rawlings, R.; Wu, J.; Boccaccini, A. Glass-ceramics: Their production from wastes—A review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Chen, D.; Bi, Y.; Long, M. Preparation of low cost glass–ceramics from molten blast furnace slag. Ceram. Int. 2012, 38, 2495–2500. [Google Scholar] [CrossRef]
- Francis, A. Non-isothermal crystallization kinetics of a blast furnace slag glass. J. Am. Ceram. Soc. 2005, 88, 1859–1863. [Google Scholar] [CrossRef]
- Cheng, T.W.; Chiu, J. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003, 16, 205–210. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.; Chen, D.; Wang, H.; Xu, H.; Zhang, R. Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process. Ceram. Int. 2009, 35, 3181–3184. [Google Scholar] [CrossRef]
- Khater, G. Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag. Ceram. Int. 2011, 37, 2193–2199. [Google Scholar] [CrossRef]
- Calahoo, C.; Wondraczek, L. Ionic glasses: Structure, properties and classification. J. Non-Cryst. Solids X 2020, 100054. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 21, 477–485. [Google Scholar] [CrossRef]
- Mollazadeh, S.; Yekta, B.E.; Javadpour, J.; Yusefi, A.; Jafarzadeh, T. The role of TiO2, ZrO2, BaO and SiO2 on the mechanical properties and crystallization behavior of fluorapatite-mullite glass-ceramics. J. Non-Cryst. Solids 2013, 361, 70–77. [Google Scholar] [CrossRef]
- Tan, X.; Liang, S.; Liu, R.; Guan, D.; Chai, L. Effect of TiO2 addition on the crystallization of quenched glasses in the SiO2-Al2O3-ZrO2 system. Phase Transit. 2011, 84, 1035–1044. [Google Scholar] [CrossRef]
- Erkmen, Z.; Çataklı, E.; Öveçoğlu, L.M. Characterisation and crystallisation kinetics of glass ceramics developed from Erdemir blast furnace slags containing Cr2O3 and TiO2 nucleants. Adv. Appl. Ceram. 2009, 108, 57–66. [Google Scholar] [CrossRef]
- Back, G.S.; Yoon, M.J.; Jung, W.G. Effect of the Cr2O3 and TiO2 as nucleating agents in SiO2-Al2O3-CaO-MgO glass-ceramic system. Met. Mater. Int. 2017, 23, 798–804. [Google Scholar] [CrossRef]
- Mukherjee, D.P.; Das, S.K. The influence of TiO2 content on the properties of glass ceramics: Crystallization, microstructure and hardness. Ceram. Int. 2014, 40, 4127–4134. [Google Scholar] [CrossRef]
- He, D.; Gao, C.; Pan, J.; Xu, A. Preparation of glass-ceramics with diopside as the main crystalline phase from low and medium titanium-bearing blast furnace slag. Ceram. Int. 2018, 44, 1384–1393. [Google Scholar] [CrossRef]
- Javed, H.; Sabato, A.G.; Dlouhy, I.; Halasova, M.; Bernardo, E.; Salvo, M.; Herbrig, K.; Walter, C.; Smeacetto, F. Shear Performance at Room and High Temperatures of Glass–Ceramic Sealants for Solid Oxide Electrolysis Cell Technology. Materials 2019, 12, 298. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C.; Wen-Wu, Y.U.; Zhang, J.L.; Luo, G.P.; Jiang, Q. Crystallization kinetics and microstructure of glass-ceramics prepared from Baotou steel blast furnace slag. Trans. Mater. Heat Treat. 2014, 35, 88–93. [Google Scholar]
- Li, J.; Yan, B.; Shu, Q.; Chou, K. Structure and crystallization kinetics of glassy CaO-Al2O3-SiO2-CaF2-Na2O mold fluxes with varying basicity. Metall. Mater. Trans. B 2015, 46, 2458–2469. [Google Scholar] [CrossRef]
- Mysen, B.O.; Virgo, D.; Scarfe, C.M. Relations between the anionic structure and viscosity of silicate melts-a Raman spectroscopic study. Am. Mineral. 1980, 65, 690–710. [Google Scholar]
- Zheng, K.; Liao, J.; Wang, X.; Zhang, Z. Raman spectroscopic study of the structural properties of CaO-MgO-SiO2-TiO2 slags. J. Non-Cryst. Solids 2013, 376, 209–215. [Google Scholar] [CrossRef]
- Inoue, K.; Sakida, S.; Nanba, T.; Miura, Y. Structure and Optical Properties of TiO2 Containing Oxide Glasses. Mater. Sci. Technol. (MS&T) 2006, 3, 583. [Google Scholar]
- Rezvani, M.; Eftekhari-Yekta, B.; Solati-Hashjin, M.; Marghussian, V.K. Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO2–Al2O3–CaO–MgO(R2O) glass-ceramics. Ceram. Int. 2005, 31, 75–80. [Google Scholar] [CrossRef]
- Ma, M.; Ni, W.; Wang, Y.; Wang, Z.; Liu, F. The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO-MgO-Al2O3-SiO2-Na2O system. J. Non-Cryst. Solids 2008, 354, 5395–5401. [Google Scholar] [CrossRef]
- Cheng, J.; Kang, J.; Lou, X.; Zhang, X.; Liu, K.; Wang, W.; Huai, X. Effect of TiO2 on crystallization of the glass ceramics prepared from granite tailings. J. Wuhan Univ. Technol. 2015, 30, 22–26. [Google Scholar] [CrossRef]
- Lippmaa, E.; Maegi, M.; Samoson, A.; Engelhardt, G.; Grimmer, A. Structural studies of silicates by solid-state high-resolution silicon-29 NMR. J. Am. Ceram. Soc. 1980, 102, 4889–4893. [Google Scholar] [CrossRef]
- Matusita, K.; Komatsu, T.; Yokota, R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 1984, 19, 291–296. [Google Scholar] [CrossRef]
- Matusita, K.; Sakka, S. Kinetic study of crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. J. Non-Cryst. Solids 1980, 38, 741–746. [Google Scholar] [CrossRef]
- Kissinger, H.E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 1956, 57, 217–221. [Google Scholar] [CrossRef]
- Bansal, N.P.; Doremus, R.H.; Bruce, A.J.; Moynihan, C. Kinetics of Crystallization of ZrF4-Ba2-LaF3 Glass by Differential Scanning Calorimetry. J. Am. Ceram. Soc. 1983, 66, 233–238. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, H.; Tan, W. Study on compositions and crystallization character of the glass-ceramics with good abrasion resistance. J. Chin. Ceram. Soc. 2003, 31, 406–409. [Google Scholar]
- Cheng, K.; Wan, J.; Liang, K. Study on Isothermal Crystallization Kinetics of Mica Glass Ceramics. J. Inorg. Mater. 1997, 12, 149–155. [Google Scholar]
- Bayrak, G.; Yilmaz, S. Crystallization kinetics of plasma sprayed basalt coatings. Ceram. Int. 2006, 32, 441–446. [Google Scholar] [CrossRef]
- Donald, I. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC. J. Non-Cryst. Solids 2004, 345, 120–126. [Google Scholar] [CrossRef]
- Park, Y.J.; Heo, J. Nucleation and crystallization kinetics of glass derived from incinerator fly ash waste. Ceram. Int. 2002, 28, 669–673. [Google Scholar] [CrossRef]
- Augis, J.; Bennett, J. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. Calori. 1978, 13, 283–292. [Google Scholar] [CrossRef]
- Zhang, W.; He, F.; Xie, J.; Liu, X.; Fang, D.; Yang, H.; Luo, Z. Crystallization mechanism and properties of glass ceramics from modified molten blast furnace slag. J. Non-Cryst. Solids 2018, 502, 164–171. [Google Scholar] [CrossRef]
Samples | CaO | SiO2 | MgO | Al2O3 | TiO2 | CaO/SiO2 |
---|---|---|---|---|---|---|
S1 | 38.5 | 38.5 | 8 | 15 | 0 | 1 |
S2 | 38 | 38 | 8 | 15 | 1 | 1 |
S3 | 37.5 | 37.5 | 8 | 15 | 2 | 1 |
S4 | 36.5 | 36.5 | 8 | 15 | 4 | 1 |
S5 | 35.5 | 35.5 | 8 | 15 | 6 | 1 |
S6 | 34.5 | 34.5 | 8 | 15 | 8 | 1 |
Heating Rate (°C/min) | Content of TiO2 (wt%) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 4 | 6 | 8 | |
5 | 1.44 | 2.42 | 3.03 | 2.27 | 2.47 | 1.94 |
10 | 1.74 | 2.16 | 2.08 | 1.94 | 2.03 | 1.94 |
15 | 1.98 | 1.89 | 2.24 | 2.13 | 2.60 | 2.22 |
20 | 1.71 | 1.73 | 2.13 | 2.08 | 2.42 | 2.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, F.; Leng, M.; Li, J.; Liu, Q. The Crystallization Behaviors of SiO2-Al2O3-CaO-MgO-TiO2 Glass-Ceramic Systems. Crystals 2020, 10, 794. https://doi.org/10.3390/cryst10090794
Lai F, Leng M, Li J, Liu Q. The Crystallization Behaviors of SiO2-Al2O3-CaO-MgO-TiO2 Glass-Ceramic Systems. Crystals. 2020; 10(9):794. https://doi.org/10.3390/cryst10090794
Chicago/Turabian StyleLai, Feifei, Mei Leng, Jiangling Li, and Qingcai Liu. 2020. "The Crystallization Behaviors of SiO2-Al2O3-CaO-MgO-TiO2 Glass-Ceramic Systems" Crystals 10, no. 9: 794. https://doi.org/10.3390/cryst10090794
APA StyleLai, F., Leng, M., Li, J., & Liu, Q. (2020). The Crystallization Behaviors of SiO2-Al2O3-CaO-MgO-TiO2 Glass-Ceramic Systems. Crystals, 10(9), 794. https://doi.org/10.3390/cryst10090794