Micro-Plasma Assisted Synthesis of ZnO Nanosheets for the Efficient Removal of Cr6+ from the Aqueous Solution
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of ZnO Nanosheets
2.2. Characterizations
2.3. Removal of Cr6+Ions Using ZnO Nanosheets
2.4. Cytotoxicity of As-Synthesized ZnO Nanosheets
3. Results and Discussion
3.1. Characterizations of As-Synthesized ZnO Nanosheets
3.2. Adsorption of Cr6+Ions over ZnO Nanosheets
3.3. Equilibrium Studies
3.4. Adsorption Kinetics
3.5. Removal Mechanism of Cr6+Ions Using ZnO Nanosheets
3.6. Cytotoxicity of ZnO As-Synthesized Nanosheets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahawong, S.; Dechtrirat, D.; Watcharin, W.; Wattanasin, P.; Muensit, N.; Chuenchom, L. Mesoporous Magnetic Carbon Adsorbents Prepared from Sugarcane Bagasse and Fe2+ and Fe3+ via Simultaneous Magnetization and Activation for Tetracycline Adsorption. Sci. Adv. Mater. 2020, 12, 161–172. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J. Photocatalytic degradation of rhodamine B catalyzed by TiO2 films on a capillary column. RSC Adv. 2018, 8, 11921–11929. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Peng, L.; Reeder, W.; Moosvai, S.M.; Tiana, D.; Britt, D.; Oveisi, E.; Queen, W. Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite. ACS Cent. Sci. 2018, 4, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.T.; Xin, Z.B.; Peng, F.; Ma, M.G. Influence of Pyrolysis Temperature on Characteristics and Nitrobenzene Adsorption Capability of Biochar Derived from Reed and Giant Reed. Sci. Adv. Mater. 2019, 11, 1523–1530. [Google Scholar] [CrossRef]
- Azizian-Kalandaragh, Y.; Fakhri-Mirzanagh, S.; Badrinezhad, L. Sonochemically Prepared SnO2 Nanostructures for Photodegradation of Methylene Blue under Mercury-Vapor and Light Emitting Diode Lamps. J. Nanoelectron. Optoelectron. 2020, 14, 177–183. [Google Scholar] [CrossRef]
- Umar, A.; Aldurabi, M.; Al-Dossary, O. NOx Gas Sensing Properties of Fe-Doped ZnO Nanoparticles. Sci. Adv. Mater. 2020, 12, 908–914. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, P.; Chauhan, P.; Kumar, R.; Umar, A. Functionalized Nanomaterials: A New Avenues for Mitigating Environmental Problems. Int. J. Environ. Sci. Technol. 2019, 16, 5331–5358. [Google Scholar] [CrossRef]
- Liu, S.; Du, X.-L.; Ma, C.; Ji, X.-X.; Ma, M.-G.; Li, J.-F. Synthesis of Magnetic Carbon/Iron Oxide Nanocomposites in Ethylene Glycol/Water Mixed Solvents and Their Highly Adsorption Performance. Sci. Adv. Mater. 2019, 11, 33–40. [Google Scholar] [CrossRef]
- Kaushal, I.; Saharan, P.; Kumar, V.; Sharma, A.K.; Umar, A. Superb sono-adsorption and energy storage potential of multifunctional Ag-Biochar composite. J. Alloys Compd. 2019, 785, 240–249. [Google Scholar] [CrossRef]
- Ren, H.-X.; Zhang, N.; Wu, D.-J.; Neckenig, M.; Jiang, J.-H.; Qi, A.-J.; Li, X.-M.; Ma, Y.-S. Comparative Study on Adsorption of Cr(VI), Mn(VII), Pb(II) and Cd(II) from Aqueous Solution Using Cetylpyridinium Bromide-Modified Zeolite. Sci. Adv. Mater. 2019, 11, 41–49. [Google Scholar] [CrossRef]
- Song, X.-L.; Wu, Y.-L.; Zhang, S.-R.; Chen, Z.; Li, Y.-G. NdFe2O4 Nanoparticles: Synthesis, Characterization, and Magnetic Properties. Sci. Adv. Mater. 2020, 12, 810–814. [Google Scholar] [CrossRef]
- Zheng, H.; Bu, H. Morphology Adjustment of TiO2 Nanostructures for Enhanced Photocatalytic Properties. J. Nanoelectron. Optoelectron. 2020, 15, 184–188. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Asif, M.H.; Saleem, M. Instigated Photonic Response of 1-D ZnO Nanostructures Grown on Surface-State Modified Seed Crystals. J. Nanoelectron. Optoelectron. 2019, 14, 1388–1393. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.; Umar, A.; Jha, M.; Mehta, S.K.; Kansal, S.K. Nanocuboidal-shaped zirconium based metal organic framework (UiO-66) for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase. New J. Chem. 2018, 42, 1921–1930. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kaur, Y.; Umar, A.; Chaudhary, G.R. Ionic liquid and surfactant functionalized ZnO nanoadsorbent for Recyclable Proficient Adsorption of toxic dyes from waste water. J. Mol. Liq. 2016, 224, 1294–1304. [Google Scholar] [CrossRef]
- Noraee, Z.; Jafari, A.; Ghaderpoori, M.; Kamarehie, B.; Ghaderpoury, A. Use of metal-organic framework to remove chromium (VI) from aqueous solutions. Inorg. Chem. 2019, 50, 5145–5152. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Balomajumder, C. Simultaneous rejection of chromium(VI) and fluoride [Cr(VI) and F] by nanofiltration: Membranes characterizations and estimations of membrane transport parameters by CFSK model. J. Environ. Chem. Eng. 2017, 5, 45–53. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Fu, H.; Yi, X.-H.; Wang, P.; Zhao, C.; Wang, C.-C.; Zheng, W. Simultaneous Cr(VI) reduction and Cr(III) removal of bifunctional MOF/Titanate nanotube composites. Environ. Pollut. 2019, 249, 502–511. [Google Scholar] [CrossRef]
- Liu, J.; Dai, M.; Song, S.; Peng, C. Removal of Pb(II) and Cr(VI) from aqueous solutions using the prepared porous adsorbent-supported Fe/Ni nanoparticles. RSC Adv. 2018, 8, 32063–32072. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Fang, D.; Zhao, H.; Yuen, M.; Li, B.; Quan, X.; Xu, Z.; Guo, Z. In Situ Photocurrent Spectroscopy and Photocatalysis of Heterojunctions Based on BiOCl/MgO/ZnO Core/Shell Nanosheets. J. Nanoelectron. Optoelectron. 2020, 15, 1053–1058. [Google Scholar]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, R.; Xu, J.; Qin, S.; Zheng, J.; Bian, Y.; Liu, Y.; Shen, B. Effect of Calcination Temperature on Light Absorption and Visible Light Photocatalytic Activity of N Doped TiO2 Nano-Crystalline. Sci. Adv. Mater. 2020, 12, 449–453. [Google Scholar] [CrossRef]
- Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals 2019, 9, 487. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Dang, R.; Liu, J.; Yang, F.; Li, H.; Zhang, Y.; Luo, J. Facile Synthesis and Characterization of Spinel NiFe2O4 Nanoparticles and Studies of Their Photocatalytic Activity for Oxidation of Alcohols. Sci. Adv. Mater. 2020, 12, 357–365. [Google Scholar] [CrossRef]
- Malik, D.S.; Jain, C.K.; Yadav, A.K. Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Appl. Water Sci. 2017, 7, 2113–2136. [Google Scholar] [CrossRef] [Green Version]
- Momina, S.M.; Isamil, S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018, 8, 24571–24587. [Google Scholar] [CrossRef]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef] [Green Version]
- Biswas, R.; Roy, T.; Chatterjee, S. Study of Electro-Optical Performance and Interfacial Charge Transfer Dynamics of Dye Sensitized Solar Cells Based on ZnO Nanostructures and Natural Dyes. J. Nanoelectron. Optoelectron. 2020, 14, 99–108. [Google Scholar] [CrossRef]
- Rajagopal, R.; Ryu, K.-S. Temperature Controlled Synthesis of Ce-MnO2 Nanostructure: Promising Electrode Material for Supercapacitor Applications. Sci. Adv. Mater. 2020, 12, 461–469. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, Q.; Hong, C.; Hegazy, H.H.; Umar, A.; Algarni, H.; Gui, Y.; Tang, C. Adsorption of CH4 Molecules on Pt-Doped ZnO(0 0 1) Surfaces: A Density Functional Theory Study. J. Nanoelectron. Optoelectron. 2019, 14, 513–520. [Google Scholar] [CrossRef]
- Yang, J.K.; Lee, S.M.; Farrokhi, M.; Giahi, O.; Shirzad Siboni, M. Photocatalytic removal of Cr(VI) with illuminated TiO2. Desalin. Water Treat. 2012, 46, 375–380. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, V.; Kumar, R.; Kumar, R.; Pruncu, C.I. Fabrication and characterization of ZrO2 incorporated SiO2–CaO–P2O5 bioactive glass scaffolds. J. Mech. Behav. Biomed. Mater. 2020, 109, 103854. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Pittman, C.U.; Mohan, D. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 2015, 442, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Le, A.T.; Pung, S.-Y.; Sreekantan, S.; Matsuda, A.; Huynh, D.P. Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon 2019, 5, e01440. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.K.; Agarwal, S.; Saleh, T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 2011, 45, 2207–2212. [Google Scholar] [CrossRef]
- Li, Y.; Gao, B.; Wu, T.; Sun, D.; Li, X.; Wang, B.; Lu, F. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res. 2009, 43, 3067–3075. [Google Scholar] [CrossRef]
- Kataria, N.; Garg, V.K. Optimization of Pb (II) and Cd (II) adsorption onto ZnO nanoflowers using central composite design: Isotherms and kinetics modelling. J. Mol. Liq. 2018, 271, 228–239. [Google Scholar] [CrossRef]
- Modwi, A.; Khezami, L.; Taha, K.; Al-Duaij, O.K.; Houas, A. Fast and high efficiency adsorption of Pb(II) ions by Cu/ZnO composite. Mater. Lett. 2017, 195, 41–44. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Han, G.; Gao, X. Band Gap Narrowed P Doped 1T@2H MoS2 Nanosheets Towards Synergistically Enhanced Visible Light Photochemical Property. J. Nanoelectron. Optoelectron. 2020, 15, 257–263. [Google Scholar] [CrossRef]
- Iqbal, T.; Khan, M.A.; Mahmood, H. Facile synthesis of ZnO nanosheets: Structural, antibacterial and photocatalytic studies. Mater. Lett. 2018, 271, 59–63. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Zhang, D.; Wang, J.; Song, S.; Ke, Y.; Wang, H. Resign Design of Co3O4 Nanowires@Ni(OH)2 Nanosheets Hybrid Structure as Electrode Materials for Supercapacitors. J. Nanoelectron. Optoelectron. 2020, 15, 952–957. [Google Scholar]
- Sadegh, H.; Mazloumbilandi, M.; Chahardouri, M. Low-Cost Materials with Adsorption Performance. In Handbook of Ecomaterials; Springer: Cham, Switzerland, 2017; pp. 1–33. [Google Scholar]
- Ndi Nsami, J.; Ketcha Mbadcam, J. The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by ZnCl2 on Methylene blue. J. Chem. 2013, 2013, 469170. [Google Scholar] [CrossRef]
- Kumar, P.; Dehiya, B.S.; Sindhu, A. Synthesis and characterization of nHA-PEG and nBG-PEG scaffolds for hard tissue engineering applications. Ceram. Int. 2019, 45, 8370–8379. [Google Scholar] [CrossRef]
- Zhong, Z.C.; Jing, Z.J.; Liu, K.Y.; Liu, T. Acetylene Sensing by ZnO/TiO2 Nanoparticles. J. Nanoelectron. Optoelectron. 2020, 15, 41–45. [Google Scholar] [CrossRef]
- Dinesh, V.P.; Biji, P.; Ashok, A.; Dhara, S.K.; Kamruddin, M.; Tyagi, A.K.; Raj, B. Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv. 2014, 4, 58930–58940. [Google Scholar] [CrossRef]
- Hargreaves, J. Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal. Struct. React. 2016, 2, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Wiktor, C.; Meledina, M.; Turner, S.; Lebedev, O.I.; Fischer, R.A. Transmission electron microscopy on metal–organic frameworks—A review. J. Mater. Chem. A 2017, 5, 14969–14989. [Google Scholar] [CrossRef]
- Nazari, Z.; Taher, M.A.; Fazelirad, H.A. Zn based metal organic framework nanocomposite: Synthesis, characterization and application for preconcentration of cadmium prior to its determination by FAAS. RSC Adv. 2017, 7, 44890–44895. [Google Scholar] [CrossRef] [Green Version]
- Samuel, M.S.; Bhattacharya, J.; Parthiban, C.; Viswanathan, G.; Singh, P. Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. Ultrason. Sonochem. 2018, 49, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Haija, M.A.; Romanyshyn, Y.; Uhl, A.; Kuhlenbeck, H.; Freund, H.-J. Carbon Dioxide Adsorption on V2O3(0001). Top. Catal. 2017, 60, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Urbina, J.; Cruz-Alonso, A.; Santander-González, M.; Méndez-Albores, A.; Vázquez-Durán, A. Physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 2018, 8, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavitha, S.; Dhamodaran, M.; Prasad, R.; Ganesan, M. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves. Int. Nano Lett. 2017, 7, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 2018, 195, 632–640. [Google Scholar] [CrossRef]
- Ren, C.; Ding, X.; Li, W.; Wu, H.; Yang, H. Highly Efficient Adsorption of Heavy Metals onto Novel Magnetic Porous Composites Modified with Amino Groups. J. Chem. Eng. Data 2017, 62, 1865–1875. [Google Scholar] [CrossRef]
- Li, L.; Quinlivan, P.A.; Knappe, D.R.U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 2002, 40, 2085–2100. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017, 10, 1629–1638. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P. Nano-TiO2 Doped Chitosan Scaffold for the Bone Tissue Engineering Applications. Int. J. Biomater. 2018, 2018, 6576157. [Google Scholar] [CrossRef] [Green Version]
- Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, C.J. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules 2017, 22, 1032. [Google Scholar] [CrossRef]
- Arslan, G.; Edebali, S.; Pehlivan, E. Physical and chemical factors affecting the adsorption of Cr(VI) via humic acids extracted from brown coals. Desalination 2010, 255, 117–123. [Google Scholar] [CrossRef]
- Yakout, S. Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater. J. Radioanal. Nucl. Chem. 2015, 308, 555–565. [Google Scholar] [CrossRef]
- Kwak, H.W.; Lee, K.H. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere 2018, 207, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D. Removal of Hexavalent Chromium from Wastewater Using a New Composite Chitosan Biosorbent. Environ. Sci. Technol. 2003, 37, 4449–4456. [Google Scholar] [CrossRef]
- Mall, I.D.; Upadhyay, S.N.; Sharma, Y.C. A review on economical treatment of wastewaters and effluents by adsorption. Int. J. Stud. 1996, 51, 77–124. [Google Scholar] [CrossRef]
- Panda, H.; Tiadi, N.; Mohanty, M.; Mohanty, C.R. Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. S. Afr. J. Chem. Eng. 2017, 23, 132–138. [Google Scholar] [CrossRef]
- Dubey, S.P.; Gopal, K. Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: A comparative study. J. Hazard. Mater. 2007, 145, 465–470. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Kermani, M.; Gholami, M.; Farzadkia, M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: Comparative study. J. Environ. Health Sci. Eng. 2013, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Nimibofa, A.; Ebelegi, A.; Donbebe, W. Modelling and Interpretation of Adsorption Isotherms. Hindawi J. Chem. 2017, 2017, 3039817. [Google Scholar]
- Subramanyam, B.; Das, A. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J. Environ. Health Sci. Eng. 2014, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Rani, S.; Mahajan, R.K. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. J. Chem. 2013, 2013, 628582. [Google Scholar] [CrossRef]
- Robati, D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 2013, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Jasper, E.E.; Ajibola, V.O.; Onwuka, J.C. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl. Water Sci. 2020, 10, 132. [Google Scholar] [CrossRef]
- Chowdhury, S.; Misra, R.; Kushwaha, P.; Das, P. Optimum Sorption Isotherm by Linear and Nonlinear Methods for Safranin onto Alkali-Treated Rice Husk. Bioremediat. J. 2011, 15, 77–89. [Google Scholar] [CrossRef]
- Bilgiç, A.; Çimen, A. Removal of chromium(VI) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Adv. 2019, 9, 37403–37414. [Google Scholar] [CrossRef] [Green Version]
- Rasaki, S.A.; Zhang, B.; Liu, S.; Thomas, T.; Yang, M. Nanourchin ZnO@TiCN composites for Cr (VI) adsorption and thermochemical remediation. J. Environ. Chem. Eng. 2018, 6, 3837–3848. [Google Scholar] [CrossRef]
- Ballerini, G.; Ogle, K.; Barthés-Labrousse, M.-G. The acid–base properties of the surface of native zinc oxide layers: An XPS study of adsorption of 1,2-diaminoethane. Appl. Surf. Sci. 2007, 253, 6860–6867. [Google Scholar] [CrossRef]
- Qu, Z.; Yan, L.; Li, L.; Xu, J.; Liu, M.; Li, Z.; Yan, N. Ultra effective ZnS Nanocrystals Sorbent for Mercury(II) Removal Based on Size-Dependent Cation Exchange. ACS Appl. Mater. Interfaces 2014, 6, 18026–18032. [Google Scholar] [CrossRef]
- Rabiee Faradonbeh, M.; Dadkhah, A.A.; Rashidi, A.; Tasharofi, S.; Mansourkhani, F. Newly MOF-Graphene Hybrid Nanoadsorbent for Removal of Ni(II) from Aqueous Phase. J. Inorg. Organomet. Polym. Mater. 2018, 28, 829–836. [Google Scholar] [CrossRef]
- Kumar, P.; Saini, M.; Kumar, V.; Singh, M.; Dehiya, B.S.; Umar, A.; Khan, M.A.; Alhuwaymel, T.F. Removal of Cr (VI) from aqueous solution using VO2(B) nanoparticles. Chem. Phys. Lett. 2020, 739, 136934. [Google Scholar] [CrossRef]
- Shirsath, D.S.; Shirivastava, V.S. Adsorptive removal of heavy metals by magnetic nanoadsorbent: An equilibrium and thermodynamic study. Appl. Nanosci. 2015, 5, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Zafar, M.N.; Dar, Q.; Nawaz, F.; Zafar, M.N.; Iqbal, M.; Nazar, M.F. Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. J. Mater. Res. Technol. 2019, 8, 713–725. [Google Scholar] [CrossRef]
- Punnoose, A.; Dodge, K.; Rasmussen, J.W.; Chess, J.; Wingett, D.; Anders, C. Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: A green chemistry approach for safer nanomaterials. ACS Sustain. Chem. Eng. 2014, 2, 1666–1673. [Google Scholar] [CrossRef]
- Wahab, R.; Siddiqui, M.A.; Saquib, Q.; Dwivedi, S.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A.A.; Shin, H.S. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B Biointerfaces 2014, 117, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Anitha, R.; Ramesh, K.V.; Ravishankar, T.N.; Sudheer Kumar, K.H.; Ramakrishnappa, T. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J. Sci. Adv. Mater. Devices 2018, 3, 440–451. [Google Scholar] [CrossRef]
- Kumar, P.; Saini, M.; Dehiya, B.S.; Umar, A.; Sindhu, A.; Mohammed, H.; Al-Hadeethi, Y.; Guo, Z. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Int. J. Biol. Macromol. 2020, 149, 1–10. [Google Scholar] [CrossRef]
- Fujihara, J.; Tongu, M.; Hashimoto, H.; Yamada, T.; Kimura-Kataoka, K.; Yasuda, T.; Fujita, Y.; Takeshita, H. Distribution and toxicity evaluation of ZnO dispersion nanoparticles in single intravenously exposed mice. J. Med. Investig. 2015, 62, 45–50. [Google Scholar] [CrossRef] [Green Version]
Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm |
---|---|---|
qm = 53.11 mg/g | KF = 9.4697 | B = 0.2866 J/mol |
KL = 0.1523 L/mg | 1/nF = 0.8305 | A = 21.5603 L/mg |
R2 = 0.5638 | R2 = 0.9631 | R2 = 0.9907 |
Pseudo-First-Order | Pseudo-Second-Order |
---|---|
K1 = 0.0049 1/min | K2 = 0.1152 1/min |
qe = 9.4697 mg/g | qe = 2.5045 mg/g |
R2 = 0.9643 | R2 = 0.9416 |
Nano Adsorbent | Metal Ions | pH | Adsorbent Dose (g/L) | % Removal Efficiency | Ref. |
---|---|---|---|---|---|
ZnS nanocrystals | Hg(II) | 1–6 | 10 | 99 | [79] |
Graphene NS | Ni(II) | 7 | 5 | 77 | [80] |
VO2 nanoparticles | Cr(VI) | 7 | 10 | 85 | [81] |
Fe3O4-GS | Zn(II) | 5 | 2.5 | 95 | [82] |
ZnO nanospheres | Pb(II) | 6 | 0.3 | 75 | [83] |
Cu-doped ZnO | Pb(II) | 7 | 0.4 | 88 | [39] |
ZnO nano sheets | Cr(VI) | 2 | 0.1 | 87.7 | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Saini, M.; Singh, M.; Chhillar, N.; S. Dehiya, B.; Kishor, K.; Alharthi, F.A.; Al-Zaqri, N.; Ali Alghamdi, A. Micro-Plasma Assisted Synthesis of ZnO Nanosheets for the Efficient Removal of Cr6+ from the Aqueous Solution. Crystals 2021, 11, 2. https://doi.org/10.3390/cryst11010002
Kumar P, Saini M, Singh M, Chhillar N, S. Dehiya B, Kishor K, Alharthi FA, Al-Zaqri N, Ali Alghamdi A. Micro-Plasma Assisted Synthesis of ZnO Nanosheets for the Efficient Removal of Cr6+ from the Aqueous Solution. Crystals. 2021; 11(1):2. https://doi.org/10.3390/cryst11010002
Chicago/Turabian StyleKumar, Pawan, Meenu Saini, Maninder Singh, Nidhi Chhillar, Brijnandan S. Dehiya, Kamal Kishor, Fahad A. Alharthi, Nabil Al-Zaqri, and Abdulaziz Ali Alghamdi. 2021. "Micro-Plasma Assisted Synthesis of ZnO Nanosheets for the Efficient Removal of Cr6+ from the Aqueous Solution" Crystals 11, no. 1: 2. https://doi.org/10.3390/cryst11010002
APA StyleKumar, P., Saini, M., Singh, M., Chhillar, N., S. Dehiya, B., Kishor, K., Alharthi, F. A., Al-Zaqri, N., & Ali Alghamdi, A. (2021). Micro-Plasma Assisted Synthesis of ZnO Nanosheets for the Efficient Removal of Cr6+ from the Aqueous Solution. Crystals, 11(1), 2. https://doi.org/10.3390/cryst11010002