Laser Floating Zone Growth: Overview, Singular Materials, Broad Applications, and Future Perspectives
Abstract
:1. Introduction
2. LFZ Technical Developments
3. Experimental Procedure (Standard)
- (1)
- The extrusion process is the most common way to prepare the precursor rod cylinders for the LFZ process, since it is a simple method, not requiring special equipment or additional hands [21,29]. Thus, the commercial raw oxide powders are mixed, according to the desired stoichiometry, and reduced in grain size with an agate ball mill or similar equipment. The purity of the precursors depends on the desired application. For example, the use of powders of 5–6 N of purity should be envisaged for photonic applications. Aiming to bind the powder mixture for the extrusion process, polyvinyl alcohol (PVA, 0.1 g/mL) is added, mashing the powders until a compact and plastic paste is achieved. The obtained clay is then extruded into cylindrical rods, with diameters that can reach up to 5 mm, depending on the material’s nature and its application. After extrusion, the cylindrical rods are dried in air and ready to be used as feed and seed materials (also known as green rods). However, it is important to emphasize that for support the extruded bars should have slots, aiming to guarantee their alignment during the drying process.
- (2)
- Alternatively, single crystals or dense ceramics appropriately cut can also be used as seed or feed rods instead of green rods [26]. The use of bulk-grown crystal seeds favors the formation of single-crystalline fibers. This approach helps laser processing and allows enhancing the structural characteristics of the single-crystal fiber produced. Similarly, in the last 10 years, cladded, single-crystalline fibers, mainly used as amplifiers, have been produced from bulk crystal seeds covered by Sol-Gel or embedded into silica or borosilicate hollow tubes, among other coating approaches [35,36,37,38,39]. Furthermore, some works from Rutgers University (Piscataway, NJ, USA) reported the growth from Pt wires together with the use of seed crystals or presintered ceramics as feed rods [40,41,42].
- (3)
- Likewise, precursor rods can be also prepared by cold isostatic pressing [43]. Through this compaction method, both mixed raw and presintered powders with the desired composition are enclosed in a flexible mold. This flexible bag is introduced into a perforated support inside a pressure container. Once this setup is sealed, fluid pressure is exerted over the outside surface of the container, allowing the container to press all around the bag and inducing uniform compaction of the powder and, consequently, a uniform density within the compacted rod [44].
4. Materials for Photonic and Optical Applications
5. Materials for Electrical Applications
6. Materials for Applications in Superconductivity
7. Incongruent Melting and Volatile Materials for Additional Applications
8. Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- García-Ruiz, J.M.; Otálora, F. Crystal Growth in Geology: Patterns on the Rocks, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 2. [Google Scholar]
- Yang, G.; Park, S.J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials 2019, 12, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamplin, B.R. Introduction to Crystal Growth Methods. In Crystal Growth; Pamplin, B.R., Ed.; Pergamon Press Ltd.: Oxford, UK, 1980; pp. 1–21. [Google Scholar]
- Friedrich, J. Methods for bulk growthof inorganic crystals: Crystal growth. In Reference Module in Materials Science and Materials Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 1–16. [Google Scholar]
- Alshourbagy, M. Development of Single Crystal Fibers for Optical, Scintillation and Mechanical Applications. Ph.D. Thesis, Università di Pisa, Pisa, Italy, 2005. [Google Scholar]
- Haggerty, J.S. Production of Fibers by a Floating Zone Fiber Drawing Technique; Final Report NASA-CR-120948; National Aeronautics and Space Administration NASA: Washington, DC, USA, 1972.
- Feigelson, R.S. Pulling optical fibers. J. Cryst. Growth 1986, 79, 669–680. [Google Scholar] [CrossRef]
- Rudolph, P.; Fukuda, T. Fiber crystal growth from the melt. Cryst. Res. Technol. 1999, 34, 3–40. [Google Scholar] [CrossRef]
- Andreeta, M.R.B.; Hernandes, A.C. Chapter 13: Laser-heated pedestal growth of oxide fibers. In Springer Handbook of Crystal Growth; Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.; Springer: Berlin, Germany, 2010; pp. 393–432. [Google Scholar]
- Revcolevschi, A. Application of a treating method based on concentration of radiant energy to X-rays diffraction until 3000 °C and to high temperature crystal growth. Rev. Int. Hautes Temp. 1970, 7, 73–94. [Google Scholar]
- Dhalenne, G.; Revcolevschi, A.; Collongues, R. Application de la methode de zone flottante a la croissance de bicristaux d’oxydes refractaires. Mater. Res. Bull. 1972, 7, 933–941. [Google Scholar] [CrossRef]
- Revcolevschi, A.; Jegoudez, J. Growth of large high-Tc single crystals by the floating zone method: A review. Prog. Mater. Sci. 1997, 42, 321–339. [Google Scholar] [CrossRef]
- Koohpayeh, S.M.; Fort, D.; Abell, J.S. The optical floating zone technique: A review of experimental procedures with special reference to oxides. Prog. Cryst. Growth Charact. Mater. 2008, 54, 121–137. [Google Scholar] [CrossRef]
- Dabkowska, H.A.; Dabkowski, A.B. Chapter 12. Crystal growth of oxides by optical floating zone technique. In Springer Handbook of Crystal Growth; Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.; Springer: Berlin, Germany, 2010; pp. 367–391. [Google Scholar]
- Phelan, W.A.; Zahn, J.; Kennedy, Z.; McQueen, T.M. Pushing boundaries: High pressure, supercritical optical floating zone materials discovery. J. Solid State Chem. 2019, 270, 705–709. [Google Scholar] [CrossRef]
- Liu, F.; Goodman, B.A.; Tan, X.; Wang, X.; Chen, D.; Deng, W. Luminescence and EPR properties of high quality ruby crystals prepared by the optical floating zone method. Opt. Mater. 2019, 91, 183–188. [Google Scholar] [CrossRef]
- Haihang, Y.; Changjiang, L.; Zhikun, Z.; Shimin, H.; Yunling, Y.; Rihua, M.; He, F.; Jingtai, Z. Single crystal growth and luminescence properties of YSH:Eu scintillator by optical floating zone method. Chem. Phys Lett. 2020, 738, 136916. [Google Scholar]
- Xin, C.; Veber, P.; Guennou, M.; Toulouse, C.; Valle, N.; Hatnean, M.C.; Balakrishnan, G.; Haumont, R.; Saint-Martin, R.; Velasquez, M.; et al. Single crystal growth of BaZrO3 from the melt at 2700 °C using optical floating zone technique and growth prospects from BaB2O4 flux at 1350 °C. CrystEngComm 2019, 21, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.X.; Zheng, H.; Ren, Y.; Korgstad, M.; Mitchell, J.F.; Phelan, D. Single crystal growth of relaxor ferroelectric Ba2PrFeNb4O15 by the optical floating zone method. Cryst. Growth Des. 2019, 19, 7249–7256. [Google Scholar] [CrossRef]
- Hatnean, M.C.; Petrenko, O.A.; Lees, M.R.; Orton, T.E.; Balakrishnan, G. Optical floating zone crystal growth of rare-earth disilicates, R2Si2O7 (R = Er, Ho, and Tm). Cryst. Growth Des. 2020, 20, 6636–6648. [Google Scholar] [CrossRef]
- Rey-García, F.; Bao-Varela, C.; Costa, F.M. Laser floating zone: General overview focusing on the oxyorthosilicates growth. In Synthesis Methods and Crystallization; Marzouki, R., Ed.; Intechopen: London, UK, 2019. [Google Scholar]
- Ito, T.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Shindo, I.; Yanase, A. Laser-diode-heated floating zone (LDFZ) method appropriate to crystal growth of incongruently melting materials. J. Cryst. Growth 2013, 363, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Schmehr, J.L.; Aling, M.; Zoghlin, E.; Wilson, S.D. High-pressure laser floating zone furnace. arXiv 2019, arXiv:1902.05937v1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fejer, M.M.; Byer, R.L.; Feigelson, R.S.; Kway, W. Growth and characterization of single crystal refractory oxide fibers. In Advances in Infrared Fibers II; Proceedings of the 2nd Meeting, Los Angeles, CA, USA, 26–28 August 2004; SPIE: Bellingham, WA, USA, 1982; p. A83-4662122-74. [Google Scholar]
- Fejer, M.M.; Nightingale, J.L.; Magel, G.A.; Byer, R.L. Laser-Heated miniature pedestal growth apparatus for single-crystal optical fibers. Rev. Sci. Instrum. 1984, 55, 1791–1796. [Google Scholar] [CrossRef]
- Martin, C.W. Reflecting Optical Objective System. U.S. Patent 2457253, 28 December 1948. [Google Scholar]
- Nubling, R.K.; Harrington, J.A. Optical properties of single-crystal sapphire fibers. Appl. Opt. 1997, 36, 5934–5940. [Google Scholar] [CrossRef]
- Bruek, E.; Gelders, H.J.; Harrison, B.J.; Menovsky, A.A. Laser-heated fibre pedestal growth under UHV conditions. J. Cryst. Growth 1996, 166, 394–397. [Google Scholar] [CrossRef]
- Carrasco, M.F.; Silva, R.F.; Vieira, J.M.; Costa, F.M. Electrical field freezing effect on laser floating zone (LFZ)-grown Bi2Sr2Cu4O11 superconducting fibres. Supercond. Sci. Technol. 2004, 17, 612–619. [Google Scholar] [CrossRef]
- Geho, M.; Sekijima, T.; Fujii, T. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine. J. Cryst. Growth 2004, 267, 188–193. [Google Scholar] [CrossRef]
- Sekijima, T.; Geho, M. Method for manufacturing terbium aluminium-based paramagnetic garnet single crystal. European Patent No. EP1391544A2, 25 February 2004. [Google Scholar]
- Kaneko, Y.; Tokura, Y. Floating zone surface equipped with a high power laser of 1 kW composed of five smart beams. J. Cryst. Growth 2020, 533, 125435. [Google Scholar] [CrossRef] [Green Version]
- Crystal System Corporation. Available online: http://www.crystalsys.co.jp/english/product04_e.html (accessed on 18 September 2020).
- Quantum Design International. Available online: https://qd-europe.com/at/en/product/1-kw-and-2-kw-laser-furnace-for-the-production-of-long-single-crystals/ (accessed on 18 September 2020).
- Wang, W.L.; Wang, J.S.; Huang, Y.C.; Liu, L.W.; Huang, S.L.; Cheng, W.H. Few-mode Cr-doped crystalline core fibers for fiber amplifier. IEEE Photon. Technol. Lett. 2012, 24, 1628–1631. [Google Scholar] [CrossRef]
- Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O’Connor, S.; Bayya, S.; Aggarwal, I.; et al. Crystal fibers for high power lasers. In Fiber Lasers X: Technology, Systems and Applications, Proceedings of the SPIE LASE, San Francisco, CA, USA, 2–7 February 2013; Hendow, S.T., Ed.; SPIE: Bellingham, WA, USA, 2013; Volume 8601, p. 86012Z. [Google Scholar]
- Nie, C.D.; Bera, S.; Melzer, J.E.; Harrington, J.A.; Dreyer, E.F.C.; Rand, S.C.; Trembath-Reichert, S.; Hoef, C.D. Erbium distribution in single crystal YAG fibers grown by laser-heated pedestal growth technique. In Solid State Lasers XXIV: Technology and Devices, Proceedings of the SPIE LASE, San Francisco, CA, USA, 8–10 February 2015; Clarkson, W.A., Shori, R.K., Eds.; SPIE: Bellingham, WA, USA, 2015; Volume 9342, p. 934204. [Google Scholar]
- Bera, S.; Ohodnicki, P., Jr.; Collins, K.; Fortner, M.; Picard, Y.N.; Liu, B.; Buric, M. Dopant segregation in YAG single crystal fibers grown by the laser heated pedestal growth technique. J. Cryst. Growth 2020, 547, 125801. [Google Scholar] [CrossRef]
- Lai, C.C.; Lo, C.Y.; Hsieh, T.H.; Tsai, W.S.; Nguyen, D.H.; Ma, Y.R. Ligand-driven and full-color-tunable fiber source: Toward next-generation clinic fiber-endoscope tomography with cellular resolution. ACS Omega 2016, 1, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.S.; Harrington, J.A.; Lautsen, B.T.; DeShazer, L.G. Single-crystal YAG fiber optics for the transmission of high energy laser energy. In Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, Proceeding of SPIE BIOS, San Francisco, CA, USA, 22 January 2011; Gannot, I., Ed.; SPIE: Bellingham, WA, USA, 2011; Volume 7894, p. 789415. [Google Scholar]
- Lautsen, B.T.; Harrington, J.A. Fabrication and optical properties of single-crystal YAG fiber optics. In Solid State Lasers XXI: Technology and Devices, Proceedings of the SPIE LASE, San Francisco, United States, 2012; Clarkson, W.A., Shori, R.K., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8235, p. 823505. [Google Scholar]
- Harrington, J.A. Single-crystal fiber optics: A review. In Solid State Lasers XXIII: Technology and Devices, Proceedings of the SPIE LASE, San Francisco, CA, USA, 21–26 January 2014; Clarkson, W.A., Shori, R.K., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 8959, p. 895901. [Google Scholar]
- Pastor, J.Y.; Llorca, J.; Salazar, A.; Oliete, P.; de Francisco, I.; Peña, J.I. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1900K. J. Am. Ceram. Soc. 2005, 88, 1488–1495. [Google Scholar] [CrossRef]
- The Library of Manufacturing. Available online: https://thelibraryofmanufacturing.com/alt_powder_processes.html (accessed on 18 September 2020).
- Rudolph, P.; Kakimoto, K. Crystal growth from the melt under external force fields. MRS Bull. 2009, 34, 252–258. [Google Scholar] [CrossRef]
- Stone, J.; Burrus, C.A.; Dentai, A.G.; Miller, B.I. Nd:YAG single-crystal fiber laser: Room-tempearature cw operation using a single LED as an end pump. Appl. Phys. Lett. 1976, 29, 37–39. [Google Scholar] [CrossRef]
- RP Photonics. Available online: https://www.rp-photonics.com/laser_crystals.html?s=ak (accessed on 26 September 2020).
- Rey-García, F.; Costa, F.M.; Zaldo, C. Laser floating zone growth of Yb, or Nd, doped (Lu0.3Gd0.7)2SiO5 oxyorthosilicate single-crystal rods with efficient laser performance. J. Mater. Chem. C 2020, 8, 2065–2073. [Google Scholar] [CrossRef]
- Maxwell, G.; Ponting, B.; Gebremichel, E.; Magana, R. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth. Crystals 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J. Cladded single crystal fibers for high power fiber lasers. In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 28–29 August 2016; Yin, S., Guo, R., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9958, p. 99580O. [Google Scholar]
- Wang, T.; Zhang, J.; Zhang, N.; Wang, S.; Wu, B.; Jia, Z.; Tao, X. The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method and the effects of their discoloration. RSC Adv. 2019, 9, 22567–22575. [Google Scholar] [CrossRef] [Green Version]
- Rey-García, F.; Rodrigues, J.; Monteiro, T.; Costa, F.M. Intense red emission on dilute Mn-doped CaYAlO4-based ceramics obtained by laser floating zone. J. Mater. Sci. Mater. Electron. 2019, 30, 21454–21464. [Google Scholar] [CrossRef]
- Ishibashi, S.; Naganuma, K. Diode-pumped Cr4+:YAG single-crystal fiber laser. In Advanced Solid State Lasers; OSA Technical Digest Series, Paper MD4; Optical Society of America: Washington, DC, USA, 2000. [Google Scholar]
- Shen, Y.; Chen, S.; Zhao, W.; Chen, J. Composite Cr4+:YAG—Nd3+:YAG crystal fiber: Growth characteristics and passively Q-switched laser operation. In Materials, Devices, and Systems for Display and Lighting, Proceedings of the Photonics Asia, Shanghai, China, 14–18 October 2002; Gan, F., Wu, M.H., Kimerling, L.C., Eds.; SPIE: Bellingham, WA, USA, 2002; Volume 4918, pp. 20–27. [Google Scholar]
- Boulon, G. Yb3+-doped oxide crystals for diode-pumped solid state lasers: Crystal growth, optical spectroscopy, new criteria of evaluation and combinatorial approach. Opt. Mater. 2003, 22, 85–87. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Boulon, G.; Laversenne, L.; Canibano, H.; Lebbou, K. Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals. J. Appl. Phys. 2003, 94, 5479. [Google Scholar] [CrossRef]
- Ye, L.; Qiu, Y.; He, J.; Shen, Y.; He, S. Growth and fluorescence characteristics of Cr3+:YAG crystal fiber for temperature sensor from −10 °C to 500 °C. In Advanced Materials and Devices for Sensing and Imaging II, Proceedings of the Photonics Asia, Beijing, China, 8–11 November 2004; Wang, A., Zhang, Y., Ishii, Y., Eds.; SPIE: Bellingham, WA, USA, 2005; Volume 5633, pp. 177–184. [Google Scholar]
- Bufetova, G.A.; Kashin, V.V.; Nikolaev, D.A.; Rusanov, S.Y.; Seregin, V.F.; Tsvetkov, V.B.; Shcherbakov, I.A.; Yakovlev, A.A. Neodymium-doped graded-index single-crystal fibre lasers. Kvantovaya Elektron. 2006, 36, 616–619. [Google Scholar] [CrossRef]
- Chen, P.Y.; Chang, C.L.; Lan, C.W.; Cheng, W.H.; Huang, S.L. Two-Dimensional simulations on heat transfer and fluid flow for yttrium aluminium garnet single-crystal fiber in laser-heated pedestal growth system. Jpn. J. Appl. Phys. 2009, 48, 115504. [Google Scholar] [CrossRef]
- Lai, C.C.; Lin, Y.S.; Huang, K.Y.; Huang, S.L. Effect of nanocrystal structures on interface of Cr-doped yttrium aluminium garnet double-clad crystal fiber. Jpn. J. Appl. Phys. 2009, 48, 122502. [Google Scholar] [CrossRef]
- Yi, J.Y.; Huang, K.Y.; Lai, C.C.; Peng, H.; Chen, L.H.; Huang, S.L. Ytterbium-Doped yettrium aluminum garnet crystal fiber multipass ring laser. Jpn. J. Appl. Phys. 2010, 49, 122701. [Google Scholar] [CrossRef]
- Chang, C.L.; Huang, S.L.; Lo, C.Y.; Huang, K.Y.; Lan, C.W.; Cheng, W.H.; Chen, P.Y. Simulation and experiment on laser-heated pedestal growth of chromium-doped yttrium aluminum garnet single-crystal fiber. J. Cryst. Growth 2011, 318, 674–678. [Google Scholar] [CrossRef]
- Kim, W.; Florea, C.; Baker, C.; Gibson, D.; Shaw, L.B.; Bowman, S.; O’Connor, S.; Villalobos, G.; Bayya, S.; Aggarwal, I.D.; et al. Single crystal fibers for high power lasers. In High-Power Lasers 2012: Technology and Systems, Proceedings of the SPIE Security + Defence, Edinburgh, UK, 24–26 September 2012; Ackermann, H., Bohn, W.L., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8547, p. 85470K. [Google Scholar]
- Hsu, K.Y.; Yang, M.H.; Jheng, D.Y.; Lai, C.C.; Huang, S.L.; Mennemann, K.; Dietrich, V. Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes. Opt. Mater. Express 2013, 3, 813–820. [Google Scholar] [CrossRef]
- Hsu, K.Y.; Yang, M.H.; Jheng, D.Y.; Mennemann, K.; Dietrich, V.; Dubinskii, M. Single crystalline YAG-core fiber with a lanthanum dense flint glass cladding. In Proceedings of the Conference on Lasers and Electro-optics Pacific Rim (CLEO-PR, 2013), Kyoto, Japan, 30 June–4 July 2013. paper ThA2-5. [Google Scholar]
- Lai, C.C.; Huang, S.L.; Wang, S.H.; Ho, W.C.; Liu, S.K.; Tsai, C.N. Strongly enhancing Cr4+ broadband emissions in strained crystalline core of Cr:YAG double-clad fiber amplifier. In Proceedings of the Conference on Lasers and Electro-optics Pacific Rim (CLEO-PR, 2013), Kyoto, Japan, 30 June–4 July 2013. paper ThA1-5. [Google Scholar]
- Maxwell, G.; Soleimani, N.; Ponting, B.; Gebremichael, E. Coilable single crystals fibers of doped-YAG for high power laser applications. In Laser Technology for Defense and Security IX, Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 29 April–3 May 2013; Dubinskii, M., Post, S.G., Eds.; SPIE: Bellingham, WA, USA, 2013; Volume 8733, p. 87330T. [Google Scholar]
- Wang, W.L.; Tseng, Y.H.; Cheng, W.H.; Wang, J.S. Silica cladded Nd3+:YAG single crystal core optical fiber and its submicron residual stress detection. Opt. Mater. Express 2014, 4, 656–661. [Google Scholar] [CrossRef]
- Oliete, P.B.; Mesa, M.C.; Merino, R.I.; Orera, V.M. Directionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters. Sol. Energy Mater. Sol. Cells 2016, 144, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.N.; Wang, T.H.; Rou, T.S.; Chen, N.K.; Huang, S.L.; Cheng, W.H. Higher gain of single-mode Cr-doped fibers employing optimized molten-zone growth. J. Light. Technol. 2017, 35, 4930–4936. [Google Scholar] [CrossRef]
- Bufetova, G.A.; Rusanov, S.Y.; Seregin, V.F.; Pyrkov, Y.N.; Tsvetkov, V.B. Dynamics of Er3+:YAG thermal radiation spectra near solid-melt interface at single crystal fiber growth process. J. Cryst. Growth 2019, 506, 165–170. [Google Scholar] [CrossRef]
- Kim, W.; Bayya, S.; Shaw, B.; Myers, J.; Qadri, S.N.; Thapa, R.; Gibson, D.; McClain, C.; Kung, F.; Kolis, J.; et al. Hydrothermally cladded crystalline fibers for laser applications. Opt. Mater. Express 2019, 9, 2716–2728. [Google Scholar] [CrossRef]
- Bao, R.; An, N.; Ye, L.; Wang, L.G. Wide-range temperature sensor based on enhanced up-conversion luminescence in Er3+/Yb3+ co-doped Y2O3 crystal fiber. Opt. Fiber Technol. 2019, 52, 101989. [Google Scholar] [CrossRef]
- An, N.; Ye, L.; Bao, R.; Yue, L.; Wang, L.G. Up-Conversion luminescence characteristics and temperature sensing of Y2O3:Ho3+/Yb3+ single crystal fiber. J. Lumin. 2019, 215, 116657. [Google Scholar] [CrossRef]
- Romero, J.J.; Montoya, E.; Bausá, L.E.; Agulló-Rueda, F.; Andreeta, M.R.B.; Hernandes, A.C. Multiwavelength laser action of Nd3+:YAlO3 single crystals grown by the laser heated pedestal growth method. Opt. Mater. 2004, 24, 643–650. [Google Scholar] [CrossRef]
- Rey-García, F.; Ben Sedrine, N.; Soares, M.R.; Fernandes, A.J.S.; Lopes, A.B.; Ferreira, N.M.; Monteiro, T.; Costa, F.M. Structural and optical characterization of Gd2SiO5 crystalline fibres obtained by laser floating zone. Opt. Mater. Express 2017, 7, 868–879. [Google Scholar] [CrossRef]
- Rey-García, F.; Rodrigues, J.; Fernandes, A.J.S.; Soares, M.R.; Monteiro, T.; Costa, F.M. (Lu0.3Gd0.7)2SiO5:Y3+ single crystals grown by the laser floating zone method: Structural and optical studies. CrystEngComm. 2018, 20, 7386–7394. [Google Scholar] [CrossRef]
- Rey-García, F.; Fernandes, A.J.S.; Costa, F.M. Influence of Lu content on (LuxGd1−x)2SiO5 oxyorthosilicates grown by Laser Floating Zone: Structural studies and transparency. Mater. Res. Bull. 2019, 112, 413–419. [Google Scholar] [CrossRef]
- Andreeta, M.R.B.; de Camargo, A.S.S.; Nunes, L.A.O.; Hernandes, A.C. Transparent and inclusion-free RE1−xLaxVO4 (RE = Gd, Y) single crystal fibers grown by LHPG technique. J. Cryst. Growth 2006, 291, 117–122. [Google Scholar] [CrossRef]
- De Camargo, A.S.S.; Ferrari, C.R.; Silva, R.A.; Nunes, L.A.O.; Hernandes, A.C.; Andreeta, J.P. Spectroscopic features of erbium-doped CaM2O6 (M = Nb, Ta) single crystal fibers grown by the laser-heated pedestal growth technique. J. Lumin. 2008, 128, 223–226. [Google Scholar] [CrossRef]
- Almeida, R.M.; Matinaga, F.M.; Andreeta, M.R.B.; Hernandes, A.C.; Dias, A.; Moreira, R.L. Polymorphic-induced transformations in CaTa2O6 single-crystal fibers obtained by laser-heated pedestal growth. Cryst. Growth Des. 2013, 13, 5289–5294. [Google Scholar] [CrossRef]
- Reyes-Ardila, D.; Barbosa, L.B.; Andreeta, J.P. Bifocal spherical mirror for laser processing. Rev. Sci. Instrum. 2001, 72, 4415. [Google Scholar] [CrossRef]
- Andreeta, M.R.B.; Caraschi, L.C.; Hernandes, A.C. Automatic diameter control system applied to the laser heated pedestal growth technique. Mater. Res. 2002, 6, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Chen, J.C.; Lai, Y.J. Investigations of the growth mechanism of stoichiometric LiNbO3 fibers grown by the laser-heated pedestal growth method. J. Cryst. Growth 2005, 275, e763–e768. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chen, J.C.; Chia, C.T. Growth and optical properties of different compositions of LiNbO3 single crystal fibers. Opt. Mater. 2007, 30, 393–398. [Google Scholar] [CrossRef]
- Matsukura, M.; Takeyama, T.; Karaki, T.; Adachi, M. Domain structures in K3Li2−xNb5+xO15+2x single-crystal fibers produced by the laser-heated pedestal growth technique. Jpn. J. Appl. Phys. 2001, 40, 5783. [Google Scholar] [CrossRef]
- Guo, Y.J.; Xu, Y.H.; Yang, C.H. Influence of Zn doping on the optical properties of KLN single crystal. J. Mater. Sci. 2004, 39, 4027–4029. [Google Scholar] [CrossRef]
- Maxwell, G.; Dalton, D.; Petersen, A.B. Second harmonic generation below 400 nm using potassium lithium niobate from laser-heated pedestal growth. In Advances in Optical Materials; OSA Technical Digest (CD), Paper AIThE4; Optical Society of America: Washington, DC, USA, 2011. [Google Scholar]
- Bourson, P.; Aillerie, M.; Cochez, M.; Ferriol, M.; Zhang, Y.; Guilbert, L. Characterization of iron substitution process in Fe:LiNbO3 single crystal fibers by polaron measurements. Opt. Mater. 2003, 24, 111–116. [Google Scholar] [CrossRef]
- Cochez, M.; Ferriol, M.; Bourson, P.; Aillerie, M. Influence of the dopant concentration on the OH- absorption band in Fe-doped LiNbO3 single-crystal fibers. Opt. Mater. 2003, 21, 775–781. [Google Scholar] [CrossRef]
- Nagashio, K.; Watcharapasorn, A.; DeMattei, R.C.; Feigelson, R.S. Fiber growth of near-stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method. J. Cryst. Growth 2004, 265, 190–197. [Google Scholar] [CrossRef]
- Lee, L.M.; Kuo, C.C.; Chen, J.C.; Chou, T.S.; Cho, Y.C.; Huang, S.L.; Lee, H.W. Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field. Opt. Commun. 2005, 253, 375–381. [Google Scholar] [CrossRef]
- Kashin, V.V.; Nikolaev, D.A.; Rusanov, S.Y.; Tsvetkov, V.B. Laser radiation frequency doubling in a single-crystal fibre based on a stoichiometric LiNbO3 crystal. Quantum Electron. 2015, 45, 47–49. [Google Scholar] [CrossRef]
- Graça, M.P.F.; Peixoto, M.V.; Ferreira, N.; Rodrigues, J.; Nico, C.; Costa, F.M.; Monteiro, T. Optical and dielectric behaviour of EuNbO4 crystals. J. Mater. Chem. C 2013, 1, 2913–2919. [Google Scholar] [CrossRef]
- Santos, N.F.; Rodrigues, J.; Fernandes, A.J.S.; Alves, L.C.; Alves, E.; Costa, F.M.; Monteiro, T. Optical properties of LFZ grown β-Ga2O3:Eu3+ fibres. Appl. Surf. Sci. 2012, 258, 9157–9161. [Google Scholar] [CrossRef]
- Seat, H.C. Growth and Characterization of Single-Crystal Fibres for SENSING applications. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2001. [Google Scholar]
- Seat, H.C.; Sharp, J.H. Er3+ + Yb3+-codoped Al2O3 crystal fibers for high-temperature sensing. Meas. Sci. Technol. 2003, 14, 279–285. [Google Scholar] [CrossRef]
- Liu, C.M.; Chen, J.C.; Chiang, C.H.; Hu, L.J.; Lin, S.P. Mg-doped sapphire crystal fibers grown by laser-heated pedestal growth method. Jpn. J. Appl. Phys. 2006, 45, 194–199. [Google Scholar] [CrossRef]
- Rodrigues, J.; Peres, M.; Fernandes, A.J.S.; Graça, M.P.F.; Sobolev, N.A.; Costa, F.M.; Monteiro, T. Structural, optical and magnetic resonance properties of TiO2 fibre grown by laser floating zone technique. Appl. Surf. Sci. 2012, 258, 9143–9147. [Google Scholar] [CrossRef]
- Bufetova, G.A.; Rusanov, S.Y.; Seregin, V.F.; Pyrkov, Y.N.; Tsvetkov, V.B. Temperature and emissivity measurements at the sapphire single crystal fiber growth process. J. Cryst. Growth 2017, 480, 85–89. [Google Scholar] [CrossRef]
- Liu, B.; Yu, Y.; Bera, S.; Buric, M.; Chorpening, B.; Ohodnicki, P. Study of the molten zone profile and defect formation during laser heated pedestal growth. In Micro- and Nanotechnology Sensors, Systems, and Applications XI, Proceedings of the SPIE Defense + Commercial Sensing, Baltimore, MD, USA, 14–18 April 2019; George, T., Saif Islam, M., Eds.; SPIE: Bellingham, WA, USA, 2019; Volume 10982, p. 109822K. [Google Scholar]
- Dragic, P.; Hawkins, T.; Foy, P.; Morris, S.; Ballato, J. Sapphire-derived all-glass optical fibres. Nat. Photonics 2012, 6, 627–633. [Google Scholar] [CrossRef]
- Lai, C.C.; Gao, W.T.; Nguyen, D.H.; Ma, Y.R.; Cheng, N.C.; Wang, S.C.; Tjiu, J.W.; Huang, C.M. Toward single-mode active crystal fibers for next-generation high-power fiber devices. ACS Appl. Mater. Interfaces 2014, 6, 13928–13936. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Lo, C.Y.; Huang, J.Z.; Fang Chiang, C.C.; Nguyen, D.H.; Chen, Y.P.; Liao, C.D. Architecting a nonlinear hybrid crystal-glass metamaterial fiber for all-optical photonic integration. J. Mater. Chem. C 2018, 6, 1659–1669. [Google Scholar] [CrossRef]
- FindLight Blog. Available online: https://www.findlight.net/blog/2017/06/17/laser-crystals/ (accessed on 26 September 2020).
- Laversenne, L.; Guyot, Y.; Goutaudier, C.; Cohen-Adad, M.T.; Boulon, G. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: Cubic Y2O3, Lu2O3 and monoclinic Gd2O3. Opt. Mater. 2001, 16, 475–483. [Google Scholar] [CrossRef]
- Laversenne, L.; Goutaudier, C.; Guyot, Y.; Cohen-Adad, M.T.; Boulon, G. Growth of rare earth (RE) doped concentration gradient crystal fibers and analysis of dynamical processes of laser resonant transitions in RE-doped Y2O3 (RE = Yb3+, Er3+, Ho3+). J. Alloys Compd. 2002, 341, 214–219. [Google Scholar] [CrossRef]
- Saggioro, B.Z.; Andreeta, M.R.B.; Hernandes, A.C.; Macatrão, M.; Peres, M.; Costa, F.M.; Monteiro, T.; Franco, N.; Alves, E. Effect of Eu2O3 doing on Ta2O5 crystal growth by the laser-heated pedestal technique. J. Cryst. Growth 2010, 313, 62–67. [Google Scholar] [CrossRef]
- Boulon, G.; Ito, M.; Goutaudier, C.; Guyot, Y. Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb3+-doped CaF2 laser crystals. J. Cryst. Growth 2006, 292, 230–235. [Google Scholar] [CrossRef]
- Boulon, G.; Guyot, Y.; Yoshikawa, A. Optimization of the gain in Yb3+-doped cubic laser crystals of 99.99% purity. J. Rare Earth 2009, 27, 616–618. [Google Scholar] [CrossRef]
- Carvalho, R.G.; Fernandes, A.J.S.; Oliveira, F.J.; Alves, E.; Franco, N.; Louro, C.; Silva, R.F.; Costa, F.M. Single and polycrystalline mullite fibres grown by laser floating zone technique. J. Eur. Ceram. Soc. 2010, 30, 3311–3318. [Google Scholar] [CrossRef]
- Rey-García, F.; Ben Sedrine, N.; Fernandes, A.J.S.; Monteiro, T.; Costa, F.M. Shifting Lu2SiO5 crystal to eutectic structure by laser floating zone. J. Eur. Ceram. Soc. 2018, 38, 2059–2067. [Google Scholar] [CrossRef]
- Soares, M.R.N.; Ferro, M.; Costa, F.M.; Monteiro, T. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm3+ and Yb3+. Nanoscale 2015, 7, 19958–19969. [Google Scholar] [CrossRef] [PubMed]
- Philippen, J.; Guguschev, C.; Klimm, D. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4:Ce3+. J. Cryst. Growth 2017, 459, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Rueda, J.E.; Hernandes, A.C. Técnica rápida de producción de monocristales de titanato de estroncio con fotoconductividad persistente. Rev. Infometr. Ser. Ing. Básicas Agríc. 2020, 3, 8–16. [Google Scholar]
- Ren, Q.; Su, H.; Zhang, J.; Ma, W.; Cao, Y.; Chen, J.; Liu, L.; Fu, H. Directional solidification and growth characteristics of Al2O3/Er3Al5O12/ZrO2 ternary eutectic ceramic by laser floating zone melting. J. Mater. Sci. 2017, 52, 5559–5568. [Google Scholar] [CrossRef]
- Mesa, M.C.; Oliete, P.B.; Larrea, A.; Orera, V.M. Directionally solidified Al2O3-Er3Al5O12-ZrO2 eutectic ceramics with interpenetrating or nanofibrillar microstructure: Residual stress analysis. J. Am. Ceram. Soc. 2012, 95, 1138–1146. [Google Scholar] [CrossRef] [Green Version]
- Geho, M.; Sekijima, T.; Fujii, T. Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by laser FZ method. J. Cryst. Growth 2005, 275, e663–e667. [Google Scholar] [CrossRef]
- Sekijima, T.; Fujii, T.; Wakino, K.; Okada, M. Optical Faraday rotator using Ce-substituted fibrous YIG single crystal grown by floating zone method with YAG laser heating. In Proceedings of the 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), Anaheim, CA, USA, 13–19 June 1999; Volume 3, pp. 1369–1372. [Google Scholar]
- Singh, S.; Lal, B. Crystalline fiber of dye-doped L-arginine phosphate by the laser-heated pedestal growth technique. J. Cryst. Growth 2008, 310, 2039–2042. [Google Scholar] [CrossRef]
- Singh, S.; Lal, B. Laser heated pedestal growth and characterization of the crystalline fibers of KDP doped L-arginine phosphate. J. Cryst. Growth 2010, 312, 443–446. [Google Scholar] [CrossRef]
- Costa, F.M.; Ferreira, N.M.; Rasekh, S.; Fernandes, A.J.S.; Torres, M.A.; Madre, M.A.; Diez, J.C.; Sotelo, A. Very large superconducting currents induced by growth tailoring. Cryst. Growth Des. 2015, 15, 2094–2101. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Rasekh, S.H.; Costa, F.M.; Madre, M.A.; Sotelo, A.; Diez, J.C.; Torres, M.A. New method to improve the grain alignment and performance of thermoelectric ceramics. Mater. Lett. 2012, 83, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.A.; Costa, F.M.; Silva, R.F.; Andreeta, J.P.; Hernandes, A.C. Electric field-modified segregation in crystal fibers of colossal magnetoresistive La0.7Ca0.3MnO3. J. Cryst. Growth 2008, 310, 3568–3572. [Google Scholar] [CrossRef]
- Costa, F.M.; Silva, R.F.; Vieira, J.M. Influence of epitaxial growth on superconducting properties of LFZ Bi-Sr-Ca-Cu-O fibres. Part I. Crystal nucleation and growth. Physica C 1997, 289, 161–170. [Google Scholar] [CrossRef]
- Costa, F.M.; Silva, R.F.; Vieira, J.M. Diffusion phenomena and crystallization path during the growth of LFZ Bi–Sr–Ca–Cu–O superconducting fibres. Supercond. Sci. Technol. 2001, 14, 910–920. [Google Scholar] [CrossRef]
- Costa, F.M.; Carrasco, M.M.; Silva, R.F.; Vieira, J.M. Chapter 2: High Tc superconducting fibers processed by conventional and electrical assisted laser floating zone. In Perspectives on Superconductivity Research; Lewis, P.S., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2007; pp. 35–59. [Google Scholar]
- Carrasco, M.M.; Silva, R.F.; Vieira, J.M.; Costa, F.M. Pulling rate and current intensity competition in an electrically assisted laser floating zone. Supercond. Sci. Technol. 2009, 22, 065016. [Google Scholar] [CrossRef]
- Constantinescu, G.; Rasekh, S.; Torres, M.A.; Madre, M.A.; Sotelo, A.; Diez, J.C. Improvement of thermoelectric properties in Ca3Co4O9 ceramics by Ba doping. J. Mater. Sci. Mater. Electron. 2015, 26, 3466–3473. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.M.; Silva, R.A.; Silva, R.F.; Costa, F.M. Enhancement of superconductivity in LFZ-grown BSCCO fibres by steeper axial temperature gradients. Appl. Surf. Sci. 2012, 258, 9175–9180. [Google Scholar] [CrossRef]
- Andreeta, M.R.B.; Andreeta, E.R.M.; Hernandes, A.C.; Feigelson, R.S. Thermal gradient control at the solid–liquid interface in the laser-heated pedestal growth technique. J. Cryst. Growth 2002, 234, 759–761. [Google Scholar] [CrossRef]
- Carrasco, M.F.; Silva, R.A.; Silva, N.J.O.; Silva, R.F.; Vieira, J.M.; Costa, F.M. Radial inhomogeneities induced by fiber diameter in electrically assisted LFZ growth of Bi-2212. Appl. Surf. Sci. 2009, 255, 5503–5506. [Google Scholar] [CrossRef]
- Costa, F.M.; Silva, R.F.; Vieira, F.M. Phase transformation kinetics during thermal annealing of LFZ Bi-Sr-Ca-Cu-O superconducting fibers in the range 800–870 °C. Physica C 1999, 323, 23–41. [Google Scholar] [CrossRef]
- Carrasco, M.F.; Amaral, V.S.; Silva, R.F.; Vieira, J.M.; Costa, F.M. Annealing time effect on Bi-2223 phase development in LFZ and EALFZ grown superconducting fibres. Appl. Surf. Sci. 2006, 252, 4957–4963. [Google Scholar] [CrossRef]
- Sotelo, A.; Madre, M.A.; Diez, J.C.; Rasekh, S.; Angurel, L.A.; Martínez, E. The influence of Pb and Ag doping on the Jc(H, T) dependence and the mechanical properties of Bi-2212 textured rods. Supercond. Sci. Technol. 2009, 22, 034012. [Google Scholar] [CrossRef]
- Madre, M.A.; Costa, F.M.; Ferreira, N.M.; Costa, S.I.R.; Rasekh, S.; Torres, M.A.; Diez, J.C.; Amaral, V.S.; Amaral, J.S.; Sotelo, A. High thermoelectric performance in Bi2−xPbxBa2Co2Oy promoted by directional growth and annealing. J. Eur. Ceram. Soc. 2016, 36, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, R12685(R). [Google Scholar] [CrossRef]
- Fergus, J.W. Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 2012, 32, 525–540. [Google Scholar] [CrossRef]
- Funahashi, R.; Matsubara, I.; Ikuta, H.; Takeuchi, T.; Mizutani, U.; Sodeoka, S. An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 2000, 39, L1127–L1129. [Google Scholar] [CrossRef]
- Sun, N.; Dong, S.T.; Zhang, B.B.; Chen, Y.B.; Zhou, J.; Zhang, S.T.; Gu, Z.B.; Yao, S.H.; Chen, Y.F. Intrinsically modified thermoelectric performance of alkaline-earth isovalently substituted [Bi2AE2O4][CoO2]y single crystals. J. Appl. Phys. 2013, 114, 043705. [Google Scholar] [CrossRef]
- Constantinescu, G.; Rasekh, S.; Torres, M.A.; Madre, M.A.; Diez, J.C.; Sotelo, A. Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics. Scr. Mater. 2013, 68, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Madre, M.A.; Costa, F.M.; Ferreira, N.M.; Sotelo, A.; Torres, M.A.; Constantinescu, G.; Rasekh, S.; Diez, J.C. Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 2013, 33, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Sotelo, A.; Rasekh, S.; Guilmeau, E.; Madre, M.A.; Torres, M.A.; Marinel, S.; Diez, J.C. Improved thermoelectric properties in directionally grown Bi2Sr2Co1.8Oy ceramics by Pb for Bi substitution. Mater. Res. Bull. 2011, 46, 2537–2542. [Google Scholar] [CrossRef] [Green Version]
- Çetin Karakaya, G.; Özçelik, B.; Torres, M.A.; Madre, M.A.; Sotelo, A. Effect of Na-doping on thermoelectric and magnetic performances of textured Bi2Sr2Co2Oy ceramics. J. Eur. Ceram. Soc. 2018, 38, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, B.; Çetin, G.; Gürsul, M.; Madre, M.A.; Sotelo, A.; Adachi, S.; Takano, Y. Low temperature thermoelectric properties of K-substituted Bi2Sr2Co2Oy ceramics prepared via laser floating zone technique. J. Eur. Ceram. Soc. 2019, 39, 3082–3087. [Google Scholar] [CrossRef] [Green Version]
- Madre, M.A.; Rasekh, S.; Torres, M.A.; Bosque, P.; Diez, J.C.; Sotelo, A. Enhanced electrical and thermoelectric properties from textured Bi1.6Pb0.4Ba2Co2Oy/Ag composites. J. Mater. Sci. 2017, 52, 4833–4839. [Google Scholar] [CrossRef] [Green Version]
- Rasekh, S.; Ferreira, N.M.; Costa, F.M.; Constantinescu, G.; Madre, M.A.; Torres, M.A.; Diez, J.C.; Sotelo, A. Development of a new thermoelectric Bi2Ca2Co1.7Ox + Ca3Co4O9 composite. Scr. Mater. 2014, 80, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, N.M.; Madre, M.A.; Torres, M.A.; Davarpanah, A.; Amaral, V.; Costa, F.M.; Sotelo, A. Improvement of grain alignment in Bi2Sr2Co1.8Oy thermoelectric through the electrically assisted laser floating zone. Mater. Res. Bull. 2020, 130, 110933. [Google Scholar] [CrossRef]
- Pfann, W.G.; Wagner, R.S. Principles of field freezing. Trans. Metall. Soc. AIME 1962, 224, 1139–1146. [Google Scholar]
- Wagner, R.S.; Miller, C.E.; Brown, H. Field-Freezing Experiments on Bi-Sn and Au-Ge Alloys. Trans. TMS AIME 1966, 236, 554–558. [Google Scholar]
- Ohtaki, M. Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. J. Ceram. Soc. Jpn. 2011, 119, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Rogado, N.S.; Cava, R.J.; Ong, N.P. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 2003, 423, 425–428. [Google Scholar] [CrossRef] [Green Version]
- Carreira, F.P.; Ferreira, N.M.; Kovalevsky, A.V. Laser processing as a tool for designing donor-substituted calcium manganite-based thermoelectrics. J. Alloys Compd. 2020, 829, 154466. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Neves, N.R.; Ferro, M.C.; Torres, M.A.; Madre, M.A.; Costa, F.M.; Sotelo, A.; Kovalevsky, A.V. Growth rate effects on the thermoelectric performance of CaMnO3-based ceramics. J. Eur. Ceram. Soc. 2019, 39, 4184–4188. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, N.M.M.; Costa, F.M.; Kovalevsky, A.V.; Madre, M.A.; Torres, M.A.; Diez, J.C.; Sotelo, A. New environmentally friendly Ba-Fe-O thermoelectric material by flexible laser floating zone processing. Scr. Mater. 2018, 145, 54–57. [Google Scholar] [CrossRef]
- Amaral, F.; Costa, L.C.; Valente, M.A.; Fernandes, A.J.S.; Franco, N.; Alves, E.; Costa, F.M. Colossal dielectric constant of poly- and single-crystalline CaCu3Ti4O12 fibres grown by the laser floating zone technique. Acta Mater. 2011, 59, 102–111. [Google Scholar] [CrossRef]
- Sergeenkov, S.; Cardoso, C.A.; Andreeta, M.R.B.; Hernandes, A.C.; Leite, E.R.; Araújo-Moreira, F.M. Growth and magnetic properties of bulk electron doped La0.7Ce0.3MnO3 manganites. Phys. Status Solidi A 2011, 208, 1704–1707. [Google Scholar] [CrossRef]
- Uda, S.; Tsubota, T. Ionic impurity transport and partitioning at the solid-liquid interface during growth of lithium niobate under an external electric field by electric current injection. J. Cryst. Growth 2010, 312, 3650–3657. [Google Scholar] [CrossRef]
- Cherif, M.; Hicher, P.; Benamara, O.; Lebbou, K.; Haumont, R.; Duffar, T. Electric Field Effects During Solidification of the Ternary Oxide Eutectic Al2O3-YAG-ZrO2. Cryst. Res. Technol. 2018, 53, 1700251. [Google Scholar] [CrossRef]
- Qiao, G.W.; Zhang, J.S.; Huang, J.G.; Jiang, M.; Ge, Y.L.; Wang, Y.Z.; Hu, Z.Q. An investigation of melt-textured high Tc superconductor wires made by laser heated pedestal growth technique. Physica C 1989, 162–164, 907–908. [Google Scholar] [CrossRef]
- Cima, M.J.; Flemings, M.C.; Figueredo, A.M.; Nakade, M.; Ishii, H.; Brody, H.D.; Haggerty, J.S. Semisolid solidification of high temperature superconducting oxides. J. Appl. Phys. 1992, 72, 179–190. [Google Scholar] [CrossRef]
- Figueredo, A.M.; Cima, M.J.; Flemings, M.C.; Haggerty, J.S. Directional Phase Formation on Melting via Peritectic Reaction. Metall. Mat. Trans. A 1994, 25, 1747–1760. [Google Scholar] [CrossRef]
- Figueredo, A.M.; Cima, M.J.; Flemings, M.C.; Haggerty, J.S.; Hara, T.; Ishii, H.; Ohkuma, T.; Hirano, S. Properties of Ba2YCu3O7−δ filaments directionally solidified by the laser-heated floating zone technique. Physica C 1995, 241, 92–102. [Google Scholar] [CrossRef]
- Feigelson, R.S.; Gazit, D.; Fork, D.K.; Geballe, T.H. Superconducting Bi-Ca-Sr-Cu-O fibers grown by the Laser-Heated Pedestal Growth Method. Science 1988, 240, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Z.; Feigelson, R.S.; Gazit, D.; Fork, D.; Geballe, T.H.; Kapinulnik, A. Properties of high-Tc oxide fibers from laser heated pedestal growth. IEEE Trans. Magn. 1989, 25, 2014–2016. [Google Scholar] [CrossRef]
- De la Fuente, G.F.; Beltrán, D.; Ibáñez, R.; Martínez, E.; Beltrán, A.; Segura, A. Crystal fibers of Bi-Sr-Ca-Cu-O materials grown by the laser floating zone method. J. Less Common Met. 1989, 150, 253–260. [Google Scholar] [CrossRef]
- De la Fuente, G.F.; Navarro, R.; Lera, F.; Rillo, C.; Bartolomé, J.; Badía, A.; Beltrán, D.; Ibáñez, R.; Beltrán, A.; Sinn, E. LFZ growth of (Bi, Pb)-Sr-Ca-Cu-O superconducting fibers. J. Mater. Res. 1991, 6, 699–703. [Google Scholar] [CrossRef]
- Angurel, L.A.; de la Fuente, G.F.; Badía, A.; Larrea, A.; Díez, J.C.; Peña, J.I.; Martínez, E.; Navarro, R. Textured BSCCO superconductors obtained via laser induced directional solidification. In Studies of High Temperature Superconductor; Narlikar, A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 1996; Volume 21, pp. 1–31. [Google Scholar]
- Carrillo-Cabrera, W.; Göpel, W.; de la Fuente, G.F.; Verdún, H.R. Preparation and growth of (Bi,Pb)-Sr-Ca-Cu-O superconductors. Appl. Phys. Lett. 1989, 55, 1032–1034. [Google Scholar] [CrossRef]
- Snoeck, E.; Larrea, A.; Roucau, C.; de la Fuente, G.F.; Huang, Y. Microstructure of (Bi, Pb)-Sr-Ca-Cu-O fibers: Study by electron microscopy. Physica C 1992, 198, 129–136. [Google Scholar] [CrossRef]
- Larrea, A.; Snoeck, E.; Badía, A.; de la Fuente, G.F.; Navarro, R. Microstructure, interfaces and magnetic behavior of thick Ag/BSCO composite fibres. Physica C 1994, 220, 21–32. [Google Scholar] [CrossRef]
- Miao, H.; Díez, J.C.; Angurel, L.A.; Peña, J.I.; de la Fuente, G.F. Phase formation and microstructure of laser floating zone grown BSCCO fibers: Reactivity aspects. Solid State Ion. 1997, 101–103, 1025–1032. [Google Scholar] [CrossRef]
- Gazit, D.; Feigelson, R.S. Laser-Heated pedestal growth of high Tc Bi-Sr-Ca-Cu-O superconducting fibers. J. Cryst. Growth 1988, 91, 318–330. [Google Scholar] [CrossRef]
- Gazit, D.; Peszkin, P.N.; Moulton, L.V.; Feigelson, R.S. Influence of growth rate on the structure and composition of float zone grown Bi2Sr2CaCu2O8 superconducting fibers. J. Cryst. Growth 1988, 91, 545–549. [Google Scholar] [CrossRef]
- De la Fuente, G.F.; Díez, J.C.; Angurel, L.A.; Peña, J.I.; Sotelo, A.; Navarro, R. Wavelength dependence on laser floating zone processing. A case study with Bi-Sr-Ca-Cu-O superconductors. Adv. Mater. 1995, 7, 853–856. [Google Scholar] [CrossRef]
- Diez, J.C.; Angurel, L.A.; Miao, H.; Fernández, J.M.; de la Fuente, G.F. Processing of textured BSCCO superconductors by laser-induced directional solidification. Supercond. Sci. Technol. 1998, 11, 101–106. [Google Scholar] [CrossRef]
- Angurel, L.A.; Díez, J.C.; Martínez, E.; Peña, J.I.; de la Fuente, G.F.; Navarro, R. Growth rate effects on thin Bi2Sr2CaCu2O8+δ textured rods. Physica C 1998, 302, 39–50. [Google Scholar] [CrossRef]
- Natividad, E.; Díez, J.C.; Peña, J.I.; Angurel, L.A.; Navarro, R.; Andrés, J.M.; Ferrando, A.C. Correlation of radial inhomogeneities and critical current at 77 K in LFZ Bi-2212 textured thin rods. Physica C 2002, 372−376, 1051–1054. [Google Scholar] [CrossRef]
- Natividad, E.; Díez, J.C.; Angurel, L.A.; Andrés, J.M. Successful application of simplex methods to the optimization of textured superconducting ceramics. J. Am. Ceram. Soc. 2004, 87, 1216–1221. [Google Scholar] [CrossRef]
- Sotelo, A.; Mora, M.; Madre, M.A.; Díez, J.C.; Angurel, L.A.; de la Fuente, G.F. Ag distribution in thick Bi-2212 floating zone textured rods. J. Eur. Ceram. Soc. 2005, 25, 2947–2950. [Google Scholar] [CrossRef]
- Özcelik, B.; Nane, O.; Sotelo, A.; Madre, M.A. Effect of Yttrium substitution on superconductivity in Bi-2212 textured rods prepared by a LFZ technique. Ceram. Int. 2016, 42, 3418–3423. [Google Scholar] [CrossRef] [Green Version]
- Özcelik, B.; Ergin, I.; Madre, M.A.; Sotelo, A. Effect of Rubidium substitution on the physical and superconducting properties of textured High-Tc BSCCO samples. J. Supercond. Nov. Magn. 2020, 33, 1285–1292. [Google Scholar] [CrossRef]
- Ergin, I.; Özcelik, B.; Madre, M.A.; Sotelo, A. Effect of Cesium substitution on the superconducting properties of Bi-2212 samples prepared via solid-state reaction and laser floating zone technique. J. Supercond. Novel Magn. 2019, 32, 3439–3448. [Google Scholar] [CrossRef]
- Natividad, E.; Mora, M.; Díez, J.C.; Peña, J.I.; García, M.; Angurel, L.A.; Navarro, R. Coaxial configuration of Bi-2212 textured ceramics: A possibility for improved current leads. IEEE Trans. Appl. Supercond. 2001, 11, 2559–2562. [Google Scholar] [CrossRef]
- Angurel, L.A.; Díez, J.C.; de la Fuente, G.F. Laser induced cylindrical zone melting of Bi2Sr2CaCu2O8+δ superconductors. Z. Anorg. Allg. Chem. 2009, 635, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.M.; Carrasco, M.F.; Ferreira, N.; Silva, R.F.; Vieira, J.M. LFZ fibre texture modification induced by electrical polarization. Physica C 2004, 408−410, 915–916. [Google Scholar] [CrossRef]
- Carrasco, M.F.; Silva, R.A.; Silva, R.F.; Amaral, V.S.; Costa, F.M. Critical Current Density Improvement in BSCCO Superconductors by Application of an Electric Current during Laser Floating Zone Growth. Physica C 2007, 460−462, 1347–1348. [Google Scholar] [CrossRef]
- Mora, M.; Martínez, E.; Angurel, L.A.; Navarro, R. Electrical dc characteristics of textured BSCCO-2212 thin rods developed for current leads. IEEE Trans. Appl. Supercond. 1999, 9, 2343–2346. [Google Scholar] [CrossRef]
- García-Tabarés, L.; Calero, J.; Abramian, P.; Toral, F.; Grau, A.; Angurel, L.A.; Díez, J.C. Study of superconducting to normal transition propagation in BSCCO2212 fibers. IEEE Trans. Appl. Supercond. 1999, 9, 1880–1883. [Google Scholar] [CrossRef]
- García-Tabarés, L.; Calero, J.; Abramian, P.; Toral, F.; Angurel, L.A.; Díez, J.C.; Burriel, R.; Natividad, E.; Iturbe, R.; Etxeandía, J. Design, fabrication and tests of a 600 A HTc current lead for the LHC correction magnets. IEEE Trans. Appl. Supercond. 2001, 11, 2543–2546. [Google Scholar] [CrossRef]
- Angurel, L.A.; Bona, M.; Andrés, J.M.; Muñoz-Rojas, D.; Casañ-Pastor, N. High quality silver contacts on ceramic superconductors obtained by electrodeposition form non-aqueous solvents. Supercond. Sci. Technol. 2005, 18, 135–141. [Google Scholar] [CrossRef]
- Rey-García, F.; Ferreira, N.M.; Fernandes, A.J.S.; Costa, F.M. Processing of the Nd2O3:SiO2 system by Laser Floating Zone in air. Results Phys. 2020, 17, 103180. [Google Scholar] [CrossRef]
- Andreeta, M.R.B.; Hernandes, A.C.; Cuffini, S.L.; Guevara, J.A.; Mascarenhas, Y.P. Laser heated pedestal growth of orthorhombic SrHfO3 single crystal fiber. J. Cryst. Growth 1999, 200, 621–624. [Google Scholar] [CrossRef]
- Lim, H.J.; DeMattei, R.C.; Feigelson, R.S.; Rochford, K. Striations in YIG fibers grown by the laser-heated pedestal growth. J. Cryst. Growth 2000, 212, 191–203. [Google Scholar] [CrossRef]
- Chen, J.C.; Chen, C.Y. Growth of Ba1−xCaxTiO3 single-crystal fibers by a laser heated pedestal method. J. Cryst. Growth 2002, 236, 640–646. [Google Scholar] [CrossRef]
- Weiner, A.M. Ultrafast Optics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Dausinger, F.; Lichtner, F.; Lubatschowski, H. Femtosecond Technology for Technical and Medical Applications; Springer: Cham, Switzerland, 2004. [Google Scholar]
- Ebrahim-Zadeh, M.; Sorokina, I.T. Mid-Infrared Coherent Sources and Applications; Springer: Cham, Switzerland, 2008. [Google Scholar]
- Malinauskas, M.; Zukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheperd, D.P.; Choudhary, A.; Lagatsky, A.A.; Kannan, P.; Beecher, S.J.; Eason, R.W.; Mackenzie, J.I.; Feng, X.; Sibbett, W.; Brown, C.T.A. Ultrafast high-repetition-rate waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 1100109. [Google Scholar]
Year | Authors | Dopant | Application | Ref. |
---|---|---|---|---|
2000 | Ishibashi & Naganuma | Cr4+ | Diode-pumped garnet | [53] |
2002 | Shen et al. | Cr4+ | Garnets for Q-switch lasers | [54] |
Nd3+ | ||||
2003 | Boulon et al. | - | Laser media | [55] |
2003 | Yoshikawa et al. | Yb3+ | Laser media | [56] |
2005 | Ye et al. | Cr3+ | Temperature sensor | [57] |
2006 | Bufetova et al. | Nd3+ | Laser media | [58] |
2009 | Chen et al. | - | Laser media | [59] |
2009 | Lai et al. | Cr4+ | Cladded Laser media | [60] |
2010 | Yi et al. | Cr4+ | Cladded Multi-pass ring laser | [61] |
2011 | Chang et al. | Cr3+ | Laser media | [62] |
2011 | Zhu et al. | - | Laser amplifier | [40] |
2012 | Lautsen & Harrington | - | Laser media | [41] |
2012 | Wang et al. | Cr4+ | Cladded fiber amplifier | [35] |
2012 | Kim et al. | Ho3+ | Cladded High power laser media | [63] |
Yb3+ | Cladded High power laser media | |||
2013 | Hsu et al. | - | Cladded Laser gain media | [64] |
2013 | Hsu et al. | Multi-mode media | [65] | |
2013 | Kim et al. | Cladded laser media | [36] | |
2013 | Lai et al. | Cr4+ | Double-cladded fiber amplifier | [66] |
2013 | Maxwell et al. | Er3+ | Cladded laser media | [67] |
Nd3+ | ||||
Yb3+ | ||||
2014 | Harrington | - | Laser media | [42] |
2014 | Wang et al. | Nd3+ | Waveguide | [68] |
2015 | Nie et al. | Er3+ | Garnets | [37] |
Ho3+ | ||||
Nd3+ | ||||
Tm3+ | ||||
Yb3+ | ||||
2016 | Kim et al. | - | High power fiber lasers | [50] |
Ho3+ | ||||
Yb3+ | ||||
2016 | Oliete et al. | - | YbAG comparative study | [69] |
2017 | Liu et al. | Cr4+ | Fiber transmission systems | [70] |
2017 | Maxwell et al. | Er3+ | Laser performance of cladded-core | [49] |
Nd3+ | ||||
Yb3+ | ||||
2019 | Bufetova et al. | Er3+ | Laser media | [71] |
2019 | Kim et al. | Ho3+ | High power fiber lasers | [72] |
Yb3+ | High power cladded fiber lasers | |||
2019 | Wang et al. | Yb3+ | High power laser | [51] |
2020 | Bera et al. | Nd3+ | Garnets | [38] |
Nd3+/Ho3+ |
Year | Authors | Material | Application/Study Aim | Ref. |
---|---|---|---|---|
2001 | Reyes-Ardila et al. | LiNbO3 | LHPG technique development | [82] |
2001 | Matsukura et al. | KLN 1 | Optical applications | [86] |
2002 | Andreeta et al. | LiNbO3 | LHPG technique development | [83] |
2003 | Boulon et al. | LiNbO3 | Laser media | [55] |
2003 | Bourson et al. | LiNbO3:Fe | Photorefractive material | [89] |
2003 | Cochez et al. | LiNbO3:Fe | Photorefractive material | [90] |
2004 | Guo et al. | KLN 1:Zn2+ | SHG 2 blue laser | [87] |
2004 | Nagashio et al. | LiNbO3 | Nonlinear optics and acoustic wave | [91] |
2005 | Chen et al. | LiNbO3 | Optical material growth & study | [84] |
2005 | Lee et al. | LiNbO3:MgO | Wavelength modulator | [92] |
2007 | Chen et al. | LiNbO3 | Optical material growth & study | [85] |
2008 | De Camargo et al. | CaNb2O6 | Laser media | [80] |
CaNb2O6:Er3+ | Laser active media | |||
2011 | Maxwell et al. | KLN 1 | Laser media | [88] |
2013 | Graça et al. | EuNbO4 | Dielectric devices | [94] |
2015 | Kashin et al. | LiNbO3 | Frequency doubling | [93] |
Year. | Authors | Material | Application | Ref. |
---|---|---|---|---|
2001 | Seat | Al2O3:Cr3+ | High temperature sensing | [96] |
Al2O3:Er3+ | ||||
Al2O3:Er3+:Yb3+ | ||||
2003 | Seat & Sharp | Al2O3:Er3+:Yb3+ | High temperature sensing | [97] |
2006 | Liu et al. | Al2O3:Mg | Strengthened sapphire garnet | [89] |
2010 | Carvalho et al. | 2Al2O3-SiO2:Nd3+ | Scintillator | [111] |
2012 | Dragic et al. | Al2O3 | Fiber sensors & high energy lasers | [102] |
2012 | Mesa et al. | Al2O3-ErAG 1-ZrO2 | Selective emitter for Si TPV cells | [117] |
2013 | Ito et al. | Al2O3:Cr3+ | LDFZ technique development 2 | [22] |
2014 | Harrington | Al2O3 | Laser media | [42] |
2014 | Lai et al. | Al2O3:Ti4+ | High power cladded fibers | [103] |
2016 | Lai et al. | Al2O3:Ti4+ | Light sources for endoscopy | [39] |
2017 | Bufetova et al. | Al2O3 | Laser media | [100] |
2017 | Ren et al. | Al2O3-ErAG 1-ZrO2 | Selective emitter for Si TPV cells | [116] |
2018 | Lai et al. | -Al2O3 | Second Harmonic Generation | [104] |
2019 | Liu et al. | Al2O3 | Laser media | [101] |
2019 | Schmehr et al. | Al2O3:Cr3+ | HP-LFZ furnace development 3 | [23] |
2020 | Kaneko & Tokura | Al2O3:Cr3+ | LDFZ technique development 2 | [32] |
Year | Authors | Oxide | Dopant | Application | Ref. |
---|---|---|---|---|---|
2001 | Laversenne et al. | Gd2O3 | Yb3+ | Laser media | [106] |
Lu2O3 | Yb3+ | ||||
Y2O3 | Yb3+ | ||||
2002 | Laversenne et al. | Y2O3 | Er3+ | Laser media | [107] |
Ho3+ | |||||
Yb3+ | |||||
2003 | Boulon et al. | Lu2O3 | - | Laser media | [55] |
Sc2O3 | - | ||||
Y2O3 | - | ||||
2010 | Saggioro et al. | Ta2O5 | Eu3+ | Electro-optical applications | [108] |
2012 | Santos et al. | ß-Ga2O3 | Eu3+ | Electro-optics (TCO) 1 | [95] |
2012 | Kim et al. | Lu2O3 | Ho3+ | Laser media | [63] |
Yb3+ | |||||
2012 | Rodrigues et al. | TiO2 | Cr3+:Fe3+ | Electro-optics | [99] |
2016 | Kim et al. | Lu2O3 | Ho3+ | Laser media | [50] |
Yb3+ | |||||
2019 | Schmehr et al. | Cu2O | - | Dye, fungicide, … | [23] |
2019 | An et al. | Y2O3 | Ho3+:Yb3+ | Temperature sensing | [74] |
2019 | Bao et al. | Y2O3 | Ho3+:Yb3+ | Temperature sensing | [73] |
2019 | Kim et al. | Lu2O3 | Ho3+ | Laser media | [72] |
Yb3+ |
Year | Authors | Material | Tech. 1 Doping | Improved Properties/Results | Ref. |
---|---|---|---|---|---|
2008 | Silva et al. | La0.7Ca0.3MnO3 | EALFZ/- | Field freezing, supercooling transition: planar to a cellular/dendritic S/L interface | [124] |
2011 | Amaral et al. | CaCu3Ti4O12 | LFZ/- | Dielectric properties single & polycrystalline CCTO 2 | [156] |
2011 | Sergeenkov et al. | La0.7Ce0.3MnO3 | LFZ/- | Three ferromagnetic transitions at 126 K, 180 K and 300 K | [157] |
2012 | Ferreira et al. | Bi2Ca2Co1.7Ox | EALFZ/- | PF = 0.088 mW/K2m @ 923 K | [123] |
2013 | Constantinescu et al. | Bi2Ba2Co2Ox | LFZ/- | Grain alignment decrease secondary phases PF = 0.4 mW/K2m @ 923 K | [141] |
2013 | Madre et al. | Ca3Co4O9 | LFZ/- | PF = 0.42 mW/K2m @ 1073 K, (annealing 72 h) | [142] |
2013 | Sotelo et al. | Bi1.6Pb0.4Sr2Co1.8Ox | LFZ/Pb & Ag | PF = 0.42 mW/K2m @ 923 K (3wt% Ag) | [143] |
2014 | Rasekh et al. | Bi2Ca2Co1.7Ox + Ca3Co4O9 | EALFZ/- | PF = 0.18 mW/K2m @ 298 K PF = 0.3 mW/K2m @ 923 K, samples grown at 300 mA | [147] |
2016 | Madre et al. | Bi2−xPbxBa2Co2Oy | LFZ/Pb | ZT = 0.53 @ 650 °C, 0.2 Pb-doped | [136] |
2017 | Madre et al. | Bi1.6Pb0.4Ba2Co2Oy/Ag | LFZ/Ag | PF = 0.46 mW/K2m @ 923 K (annealed) | [146] |
2018 | Çetin Karakaya et al. | Bi2Sr2Co2Oy | LFZ/Na | Grain alignment decrease secondary phases | [144] |
2018 | Ferreira et al. | BaFe12Ox | LFZ/- | Fe2O3 and BaCO3 precursors: high abundance and low costs | [155] |
2019 | Ferreira et al. | CaMnO3 | LFZ/- | PF = 0.39 mW/K2m @ 1073 K, (10 mm/h) | [154] |
2019 | Ferreira et al. | Ca0.9La0.1MnO3 | LFZ/La | (no data) | [154] |
2019 | Ferreira et al. | CaMn0.93Nb0.05O3 | LFZ/Nb | (no data) | [154] |
2019 | Özçelik et al. | Bi2Sr2Co2Oy | LFZ/K | Grain orientation decrease secondary phases ZT = 0.029 @ 400 K (x = 0.10) | [145] |
2020 | Carreira et al. | Ca1−xPrxMnO3 | LFZ/Pr | PF = 0.303 mW/K2m @ 1123 K for (100 mm/h, air, annealing 1573 K) | [153] |
2020 | Ferreira et al. | Bi2Sr2Co1.8Oy | EALFZ/- | Grain orientation decrease secondary phases ZT = 0.09 @ 923 K (+300 mA) | [148] |
Year | Authors | Material 1 | Laser | Ref. |
---|---|---|---|---|
1988 | Feigelson et al. | Bi-2212 | CO2 | [164] |
1989 | Qiao et al. | YBaCuO, Bi-2212 | CO2 | [160] |
1989 | De la Fuente et al. | Bi-2223 | CO2 | [166] |
1989 | Carillo-Cabrera et al. | Bi-2223 | CO2 | [169] |
1989 | Gazit et al. | Bi-2212 | CO2 | [173,174] |
1992 | Cima et al. | YBaCuO | CO2 | [161] |
1992 | Snoeck et al. | Bi-2223 | CO2 | [170] |
1994 | Figueredo et al. | YBaCuO | CO2 | [162] |
1994 | Larrea et al. | Bi-2223 | CO2 | [171] |
1995 | De la Fuente et al. | Bi-2212, Bi-2223 | CO2, Nd:YAG | [175] |
1997 | Costa et al. | Bi-2223 | CO2 | [123] |
1998 | Diez et al. | Bi-2212, Bi-2223 | Nd:YAG | [176] |
1998 | Angurel et al. | Bi-2212 | Nd:YAG | [177] |
1999 | Costa et al. | Bi-2223 | CO2 | [133] |
2004 | Carrasco et al. | Bi-2223 | Nd:YAG | [29] |
2004 | Costa et al. | Bi-2223 | Nd:YAG | [186] |
2004 | Natividad et al. | Bi-2212 | Nd:YAG | [179] |
2005 | Sotelo et al. | Bi-2212 | Nd:YAG | [180] |
2015 | Costa et al. | Bi-2212 | CO2 | [122] |
2016 | Özcelik et al. | Bi-2212 | Nd:YAG | [181] |
2020 | Özcelik et al. | Bi-2212 | Nd:YAG | [182] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey-García, F.; Ibáñez, R.; Angurel, L.A.; Costa, F.M.; de la Fuente, G.F. Laser Floating Zone Growth: Overview, Singular Materials, Broad Applications, and Future Perspectives. Crystals 2021, 11, 38. https://doi.org/10.3390/cryst11010038
Rey-García F, Ibáñez R, Angurel LA, Costa FM, de la Fuente GF. Laser Floating Zone Growth: Overview, Singular Materials, Broad Applications, and Future Perspectives. Crystals. 2021; 11(1):38. https://doi.org/10.3390/cryst11010038
Chicago/Turabian StyleRey-García, Francisco, Rafael Ibáñez, Luis Alberto Angurel, Florinda M. Costa, and Germán F. de la Fuente. 2021. "Laser Floating Zone Growth: Overview, Singular Materials, Broad Applications, and Future Perspectives" Crystals 11, no. 1: 38. https://doi.org/10.3390/cryst11010038
APA StyleRey-García, F., Ibáñez, R., Angurel, L. A., Costa, F. M., & de la Fuente, G. F. (2021). Laser Floating Zone Growth: Overview, Singular Materials, Broad Applications, and Future Perspectives. Crystals, 11(1), 38. https://doi.org/10.3390/cryst11010038