Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-Trapped and Dislocation-Mediated Delamination Modes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Void Nucleation Process
3.2. Kinetics of Lattice-Trapped Delamination
3.3. Analysis of Dislocation-Mediated Delamination
4. Discussion
4.1. Thermal Activation Analysis
4.2. Dislocation Nucleation
4.3. Implications for Damage and Rupture of Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Selection of Ramping Duration
References
- Goods, S.H.; Brown, L.M. The Nucleation of Cavities by Plastic Deformation. Acta Met. 1979, 27, 1–15. [Google Scholar] [CrossRef]
- Needleman, A. A Continuum Model for Void Nucleation by Inclusion Debonding. J. Appl. Mech. 1987, 54, 525–531. [Google Scholar] [CrossRef]
- Shabrov, M.N.; Needleman, A. An analysis of inclusion morphology effects on void nucleation. Model. Simul. Mater. Sci. Eng. 2002, 10, 163–183. [Google Scholar] [CrossRef]
- Besson, J. Continuum Models of Ductile Fracture: A Review. Int. J. Damage Mech. 2010, 19, 3–52. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, M.; Navas, V.M.T.; Munõz, D.P.; Bernacki, M.; Bouchard, P.-O. Computational Methods for Ductile Fracture Modeling at the Microscale. Arch. Comput. Methods Eng. 2019, 26, 1153–1192. [Google Scholar] [CrossRef]
- Bitzek, E.; Kermode, J.R.; Gumbsch, P. Atomistic aspects of fracture. Int. J. Fract. 2015, 191, 13–30. [Google Scholar] [CrossRef]
- Tvergaard, V.; Needleman, A. The Modified Gurson Model. In Handbook of Materials Behavior Models; Elsevier: Amsterdam, The Netherlands, 2001; pp. 430–435. [Google Scholar]
- Chu, C.C.; Needleman, A. Void Nucleation Effects in Biaxially Stretched Sheets. J. Eng. Mater. Technol. 1980, 102, 249–256. [Google Scholar] [CrossRef]
- Tvergaard, V. Material Failure by Void Growth to Coalescence. In Advances in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 1989; Volume 27, pp. 83–151. [Google Scholar]
- Boyce, B.L.; Kramer, S.L.B.; Fang, H.E.; Cordova, T.E.; Neilsen, M.K.; Dion, K.; Kaczmarowski, A.K.; Karasz, E.; Xue, L.; Gross, A.J.; et al. The Sandia Fracture Challenge: Blind round robin predictions of ductile tearing. Int. J. Fract. 2014, 186, 5–68. [Google Scholar] [CrossRef] [Green Version]
- Boyce, B.L.; Kramer, S.L.B.; Bosiljevac, T.R.; Corona, E.; Moore, J.A.; Elkhodary, K.; Simha, C.H.M.; Williams, B.W.; Cerrone, A.R.; Nonn, A.; et al. The second Sandia Fracture Challenge: Predictions of ductile failure under quasi-static and moderate-rate dynamic loading. Int. J. Fract. 2016, 198, 5–100. [Google Scholar] [CrossRef]
- Kramer, S.L.B.; Jones, A.; Mostafa, A.; Ravaji, B.; Tancogne-Dejean, T.; Roth, C.C.; Bandpay, M.G.; Pack, K.; Foster, J.T.; Behzadinasab, M.; et al. The third Sandia fracture challenge: Predictions of ductile fracture in additively manufactured metal. Int. J. Fract. 2019, 218, 5–61. [Google Scholar] [CrossRef]
- Berdichevsky, V.; Le, K.C. On The Microcrack Nucleation In Brittle Solids. Int. J. Fract. 2005, 133, L47–L54. [Google Scholar] [CrossRef]
- Dias, C.L.; Kröger, J.; Vernon, D.; Grant, M. Nucleation of cracks in a brittle sheet. Phys. Rev. E 2009, 80, 066109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, S.; Raole, P.M. Molecular dynamics investigation of void evolution dynamics in single crystal iron at extreme strain rates. Comput. Mater. Sci. 2018, 154, 393–404. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, X.; Wang, J.; Wang, J.; Wang, F.; Ding, J. Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high strain rates. Mech. Mater. 2019, 135, 98–113. [Google Scholar] [CrossRef]
- Agarwal, G.; Dongare, A.M. Defect and damage evolution during spallation of single crystal Al: Comparison between molecular dynamics and quasi-coarse-grained dynamics simulations. Comput. Mater. Sci. 2018, 145, 68–79. [Google Scholar] [CrossRef]
- Shao, J.-L.; Wang, P.; He, A.-M.; Zhang, R.; Qin, C.-S. Spall strength of aluminium single crystals under high strain rates: Molecular dynamics study. J. Appl. Phys. 2013, 114, 173501. [Google Scholar] [CrossRef]
- Liao, Y.; Xiang, M.; Zeng, X.; Chen, J. Molecular dynamics study of the micro-spallation of single crystal tin. Comput. Mater. Sci. 2014, 95, 89–98. [Google Scholar] [CrossRef]
- Rawat, S.; Warrier, M.; Chaturvedi, S.; Chavan, V.M. Temperature sensitivity of void nucleation and growth parameters for single crystal copper: A molecular dynamics study. Model. Simul. Mater. Sci. Eng. 2011, 19, 025007. [Google Scholar] [CrossRef]
- Pang, W.-W.; Zhang, P.; Zhang, G.-C.; Xu, A.-G.; Zhao, X.-G. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture. Sci. Rep. 2015, 4, 6981. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.E.; Mayer, P.N. Strain rate dependence of spall strength for solid and molten lead and tin. Int. J. Fract. 2020, 222, 171–195. [Google Scholar]
- Paul, S.K.; Kumar, S.; Tarafder, S. Effect of loading conditions on nucleation of nano void and failure of nanocrystalline aluminum: An atomistic investigation. Eng. Fract. Mech. 2017, 176, 257–262. [Google Scholar] [CrossRef]
- Fensin, S.J.; Cerreta, E.K.; Iii, G.T.G.; Valone, S.M. Why are some Interfaces in Materials Stronger than others? Sci. Rep. 2015, 4, 5461. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Deng, X. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal. Nanotechnology 2008, 19, 115705. [Google Scholar] [CrossRef] [PubMed]
- Pogorelko, V.V.; Mayer, A.E. Influence of copper inclusions on the strength of aluminum matrix at high-rate tension. Mater. Sci. Eng. A 2015, 642, 351–359. [Google Scholar] [CrossRef]
- Pogorelko, V.V.; Mayer, A.E. Influence of titanium and magnesium nanoinclusions on the strength of aluminum at high-rate tension: Molecular dynamics simulations. Mater. Sci. Eng. A 2016, 662, 227–240. [Google Scholar] [CrossRef]
- Pogorelko, V.V.; Mayer, A.E. Tensile strength of Fe–Ni and Mg–Al nanocomposites: Molecular dynamic simulations. J. Phys. Conf. Ser. 2018, 946, 012043. [Google Scholar] [CrossRef]
- Pogorelko, V.V.; Mayer, A.E. Tensile strength of Al matrix with nanoscale Cu, Ti and Mg inclusions. J. Phys. Conf. Ser. 2016, 774, 012034. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Z. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: A molecular dynamics study. Model. Simul. Mater. Sci. Eng. 2017, 25, 025007. [Google Scholar] [CrossRef]
- Coffman, V.R.; Sethna, J.P.; Heber, G.; Liu, M.; Ingraffea, A.; Bailey, N.P.; Barker, E.I. A comparison of finite element and atomistic modelling of fracture. Model. Simul. Mater. Sci. Eng. 2008, 16, 065008. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, K.T. High Rates and Impact Experiments. In Springer Handbook of Experimental Solid Mechanics; Sharpe, W.N., Ed.; Springer: Boston, MA, USA, 2008; pp. 929–960. [Google Scholar]
- Williams, C.L.; Chen, C.Q.; Ramesh, K.T.; Dandekar, D.P. On the shock stress, substructure evolution, and spall response of commercially pure 1100-O aluminum. Mater. Sci. Eng. A 2014, 618, 596–604. [Google Scholar] [CrossRef]
- Nie, J.-F. 20 Physical Metallurgy of Light Alloys. In Physical Metallurgy; Laughlin, D.E., Hono, K., Eds.; Elsevier: Oxford, UK, 2014; pp. 2009–2156. [Google Scholar]
- Vaughan, D.; Silcock, J.M. The Orientation and Shape of θ Precipitates Formed in an Al-Cu Alloy. Phys. Status Solidi B 1967, 20, 725–736. [Google Scholar] [CrossRef]
- Wisner, B.; Kontsos, A. Investigation of particle fracture during fatigue of aluminum 2024. Int. J. Fatigue 2018, 111, 33–43. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Apostol, F.; Mishin, Y. Interatomic potential for the Al-Cu system. Phys. Rev. B 2011, 83, 054116. [Google Scholar] [CrossRef] [Green Version]
- Mura, T. Micromechanics of Defects in Solids; Springer: Dordrecht, The Netherlands, 1987; Volume 3. [Google Scholar]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Thomson, R.; Hsieh, C.; Rana, V. Lattice Trapping of Fracture Cracks. J. Appl. Phys. 1971, 42, 3154–3160. [Google Scholar] [CrossRef]
- Schoeck, G. Thermally activated crack-propagation in brittle materials. Int. J. Fract. 1990, 44, 1–14. [Google Scholar] [CrossRef]
- Argon, A.S. Thermally activated crack growth in brittle solids? Scr. Metall. 1982, 16, 259–264. [Google Scholar] [CrossRef]
- Zhu, T.; Li, J.; Yip, S. Atomistic Configurations and Energetics of Crack Extension in Silicon. Phys. Rev. Lett. 2004, 93, 205504. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Li, J.; Yip, S. Atomistic characterization of three-dimensional lattice trapping barriers to brittle fracture. Proc. R. Soc. Math. Phys. Eng. Sci. 2006, 462, 1741–1761. [Google Scholar] [CrossRef]
- Wiederhorn, S.M.; Johnson, H.; Diness, A.M.; Heuer, A.H. Fracture of Glass in Vacuum. J. Am. Ceram. Soc. 1974, 57, 6. [Google Scholar] [CrossRef]
- Tan, C.L.; Gao, Y.L. Stress intensity factors for cracks at spherical inclusions by the boundary integral equation method. J. Strain Anal. Eng. Des. 1990, 25, 197–206. [Google Scholar] [CrossRef]
- Rice, J.R. Elastic Fracture Mechanics Concepts for Interfacial Cracks. J. Appl. Mech. 1988, 55, 98–103. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.N.; Mao, C.; Peng, P. Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations. Solid State Commun. 2012, 152, 2100–2104. [Google Scholar] [CrossRef]
- Zhu, T.; Li, J.; Yip, S. Atomistic Study of Dislocation Loop Emission from a Crack Tip. Phys. Rev. Lett. 2004, 93, 025503. [Google Scholar] [CrossRef] [Green Version]
- Gray, G.T., III. High-Strain-Rate Deformation: Mechanical Behavior and Deformation Substructures Induced. Annu. Rev. Mater. Res. 2012, 42, 285–303. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Warner, D.H. Improbability of Void Growth in Aluminum via Dislocation Nucleation under Typical Laboratory Conditions. Phys. Rev. Lett. 2012, 108, 035501. [Google Scholar] [CrossRef] [Green Version]
- Sills, R.B.; Boyce, B.L. Void growth by dislocation adsorption. Mater. Res. Lett. 2020, 8, 103–109. [Google Scholar] [CrossRef]
- Murr, L.E. Interfacial Phenomena in Metals and Alloys; Addison-Wesley: London, UK, 1975. [Google Scholar]
- Croom, B.P.; Jin, H.; Noell, P.J.; Boyce, B.L.; Li, X. Collaborative ductile rupture mechanisms of high-purity copper identified by in situ X-ray computed tomography. Acta Mater. 2019, 181, 377–384. [Google Scholar] [CrossRef]
- Achouri, M.; Germain, G.; Santo, P.D.; Saidane, D. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater. Des. 2013, 50, 207–222. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.Q.; Boyce, B.L.; Sills, R.B. Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-Trapped and Dislocation-Mediated Delamination Modes. Crystals 2021, 11, 45. https://doi.org/10.3390/cryst11010045
Zhao QQ, Boyce BL, Sills RB. Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-Trapped and Dislocation-Mediated Delamination Modes. Crystals. 2021; 11(1):45. https://doi.org/10.3390/cryst11010045
Chicago/Turabian StyleZhao, Qian Qian, Brad L. Boyce, and Ryan B. Sills. 2021. "Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-Trapped and Dislocation-Mediated Delamination Modes" Crystals 11, no. 1: 45. https://doi.org/10.3390/cryst11010045
APA StyleZhao, Q. Q., Boyce, B. L., & Sills, R. B. (2021). Micromechanics of Void Nucleation and Early Growth at Incoherent Precipitates: Lattice-Trapped and Dislocation-Mediated Delamination Modes. Crystals, 11(1), 45. https://doi.org/10.3390/cryst11010045