Alkali Uranyl Borates: Bond Length, Equatorial Coordination and 5f States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syntheses
2.2. X-ray Absorption Spectroscopy
3. Results
3.1. Uranyl Borate Structures
3.1.1. UBO
3.1.2. LUBO
3.1.3. NUBO
3.2. X-ray Absorption Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayton, T.W. Understanding the origins of Oyl-U-Oyl bending in the uranyl () ion. Dalton Trans. 2018, 47, 1003–1009. [Google Scholar] [CrossRef]
- Burns, P.C. U6+ minerals and inorganic compounds: insights into an expanted structural hierarchy of crystal structures. Can. Mineral. 2005, 43, 1839–1894. [Google Scholar] [CrossRef]
- Hoekstra, H.R. Uranyl Metaborate and Sodium Uranyl Borate. In Lanthanide/Actinide Chemistry; Fields, P.R., Moeller, T., Eds.; Series Title: Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1967; Volume 71, pp. 320–330. [Google Scholar] [CrossRef]
- Behm, H. Hexapotassium (cyclo-octahydroxotetracosaoxohexadecarborato)dioxouranate(VI) dodecahydrate, K6[UO2B16O24(OH)8]·12H2O. Acta Crystallogr. Sect. Cryst. Struct. Commun. 1985, 41, 642–645. [Google Scholar] [CrossRef] [Green Version]
- Gasperin, M. Structure du borate d’uranium UB2O6. Acta Crystallogr. Sect. C 1987, 43, 2031–2033. [Google Scholar] [CrossRef]
- Gasperin, M. Synthèse et structure du borouranate de sodium, NaBUO5. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1988, 44, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Gasperin, M. Synthèse et structure du borouranate de lithium LiBUO5. Acta Crystallogr. Sect. C 1990, 46, 372–374. [Google Scholar] [CrossRef] [Green Version]
- Popa, K.; Beneš, O.; Staicu, D.; Griveau, J.C.; Colineau, E.; Seibert, A.; Colle, J.Y.; Stohr, S.; Raison, P.E.; Somers, J.; et al. Heat capacity, thermal expansion, and thermal diffusivity of NaUO2BO3. J. Therm. Anal. Calorim. 2018, 132, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Alekseev, E.V.; Stritzinger, J.T.; Depmeier, W.; Albrecht-Schmitt, T.E. Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes. Inorg. Chem. 2010, 49, 6690–6696. [Google Scholar] [CrossRef]
- Wang, S.; Alekseev, E.V.; Stritzinger, J.T.; Depmeier, W.; Albrecht-Schmitt, T.E. How are Centrosymmetric and Noncentrosymmetric Structures Achieved in Uranyl Borates? Inorg. Chem. 2010, 49, 2948–2953. [Google Scholar] [CrossRef]
- Wang, S.; Alekseev, E.V.; Ling, J.; Liu, G.; Depmeier, W.; Albrecht-Schmitt, T.E. Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials. Chem. Mater. 2010, 22, 2155–2163. [Google Scholar] [CrossRef]
- Wang, S.; Villa, E.M.; Diwu, J.; Alekseev, E.V.; Depmeier, W.; Albrecht-Schmitt, T.E. Role of Anions and Reaction Conditions in the Preparation of Uranium(VI), Neptunium(VI), and Plutonium(VI) Borates. Inorg. Chem. 2011, 50, 2527–2533. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Alekseev, E.V.; Stritzinger, J.T.; Liu, G.; Depmeier, W.; Albrecht-Schmitt, T.E. Structure-Property Relationships in Lithium, Silver, and Cesium Uranyl Borates. Chem. Mater. 2010, 22, 5983–5991. [Google Scholar] [CrossRef]
- Silver, M.A.; Albrecht-Schmitt, T.E. Evaluation of f-element borate chemistry. Coord. Chem. Rev. 2016, 323, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Hunault, M.O.J.Y.; Lelong, G.; Cormier, L.; Galoisy, L.; Solari, P.L.; Calas, G. Speciation Change of Uranyl in Lithium Borate Glasses. Inorg. Chem. 2019, 58, 6858–6865. [Google Scholar] [CrossRef] [PubMed]
- Pace, K.A.; Koch, R.J.; Smith, M.D.; Morrison, G.; Klepov, V.V.; Besmann, T.M.; Misture, S.T.; zur Loye, H.C. Crystal Growth of Alkali Uranyl Borates from Molten Salt Fluxes: Characterization and Ion Exchange Behavior of A2(UO2)B2O5 (A = Cs, Rb, K). Inorg. Chem. 2020, 59, 6449–6459. [Google Scholar] [CrossRef] [PubMed]
- Neidig, M.L.; Clark, D.L.; Martin, R.L. Covalency in f-element complexes. Coord. Chem. Rev. 2013, 257, 394–406. [Google Scholar] [CrossRef]
- Baker, R.J. New Reactivity of the Uranyl(VI) Ion. Chem. Eur. J. 2012, 18, 16258–16271. [Google Scholar] [CrossRef]
- Fortier, S.; Hayton, T.W. Oxo ligand functionalization in the uranyl ion (). Coord. Chem. Rev. 2010, 254, 197–214. [Google Scholar] [CrossRef]
- Jollivet, P.; Den Auwer, C.; Simoni, E. Evolution of the uranium local environment during alteration of SON68 glass. J. Nucl. Mater. 2002, 301, 142–152. [Google Scholar] [CrossRef]
- Allen, P.G.; Bucher, J.J.; Clark, D.L.; Edelstein, N.M.; Ekberg, S.A.; Gohdes, J.W.; Hudson, E.A.; Kaltsoyannis, N.; Lukens, W.W.; Neu, M.P.; et al. Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of [C(NH2)3]6[(UO2)3(CO3)6]·6H2O. Inorg. Chem. 1995, 19, 4797–4807. [Google Scholar] [CrossRef]
- Den Auwer, C.; Simoni, E.; Conradson, S.; Madic, C. Investigating Actinyl Oxo Cations by X-ray Absorption Spectroscopy. Eur. J. Inorg. Chem. 2003, 2003, 3843–3859. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Zhang, J.; Su, J.; Zhang, S.; Chen, N.; Jia, Y.; Li, J.; Wang, Y.; Wang, J.Q. Extraction of local coordination structure in a low-concentration uranyl system by XANES. J. Synchrotron Radiat. 2016, 23, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P.S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; et al. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Kolorenč, J.; Kvashnina, K.O. Theoretical Modelling of High-Resolution X-Ray Absorption Spectra at Uranium M4 Edge. MRS Adv. 2018, 3, 3143–3148. [Google Scholar] [CrossRef]
- Kvashnina, K.O.; Butorin, S.M.; Martin, P.; Glatzel, P. Chemical State of Complex Uranium Oxides. Phys. Rev. Lett. 2013, 111. [Google Scholar] [CrossRef] [Green Version]
- Leinders, G.; Bes, R.; Pakarinen, J.; Kvashnina, K.; Verwerft, M. Evolution of the Uranium Chemical State in Mixed-Valence Oxides. Inorg. Chem. 2017, 56, 6784–6787. [Google Scholar] [CrossRef]
- Bès, R.; Kvashnina, K.; Rossberg, A.; Dottavio, G.; Desgranges, L.; Pontillon, Y.; Solari, P.L.; Butorin, S.M.; Martin, P. New insight in the uranium valence state determination in UyNd1−yO2±x. J. Nucl. Mater. 2018, 507, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Sitaud, B.; Solari, P.L.; Schlutig, S.; Llorens, I.; Hermange, H. Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. J. Nucl. Mater. 2012, 425, 238–243. [Google Scholar] [CrossRef]
- LLorens, I.; Solari, P.; Sitaud, B.; Bes, R.; Cammelli, S.; Hermange, H.; Othmane, G.; Safi, S.; Moisy, P.; Wahu, S.; et al. X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron. Radiochim. Acta 2014, 102, 957–972. [Google Scholar] [CrossRef]
- Newville, M. Larch: An Analysis Package for XAFS and Related Spectroscopies. J. Phys. Conf. Ser. 2013, 430, 012007. [Google Scholar] [CrossRef]
- Vitova, T.; Kvashnina, K.O.; Nocton, G.; Sukharina, G.; Denecke, M.A.; Butorin, S.M.; Mazzanti, M.; Caciuffo, R.; Soldatov, A.; Behrends, T.; et al. High energy resolution x-ray absorption spectroscopy study of uranium in varying valence states. Phys. Rev. B 2010, 82, 235118. [Google Scholar] [CrossRef] [Green Version]
- Petiau, J.; Calas, G.; Petitmaire, D.; Bianconi, A.; Benfatto, M.; Marcelli, A. Delocalized versus localized unoccupied 5f states and the uranium site structure in uranium oxides and glasses probed by X-ray-absorption near-edge structure. Phys. Rev. B 1986, 34, 7350. [Google Scholar] [CrossRef] [PubMed]
- Farges, F.; Ponader, C.W.; Calas, G.; Brown, G.E. Structural environments of incompatible elements in silicate glass/melt systems: II. UIV, UV, and UVI. Geochim. Cosmochim. Acta 1992, 56, 4205–4220. [Google Scholar] [CrossRef]
- Denning, R.G. Electronic Structure and Bonding in Actinyl Ions and their Analogs. J. Phys. Chem. A 2007, 111, 4125–4143. [Google Scholar] [CrossRef]
- Fillaux, C.; Berthet, J.C.; Conradson, S.D.; Guilbaud, P.; Guillaumont, D.; Hennig, C.; Moisy, P.; Roques, J.; Simoni, E.; Shuh, D.K.; et al. Combining theoretical chemistry and XANES multi-edge experiments to probe actinide valence states. Comptes Rendus Chim. 2007, 10, 859–871. [Google Scholar] [CrossRef]
- Galoisy, L.; Cormier, L.; Calas, G.; Briois, V. Environment of Ni, Co and Zn in low alkali borate glasses: information from EXAFS and XANES spectra. J. Non-Cryst. Solids 2001, 293–295, 105–111. [Google Scholar] [CrossRef]
- Hunault, M.O.J.Y.; Galoisy, L.; Lelong, G.; Newville, M.; Calas, G. Effect of cation field strength on Co2+ speciation in alkali-borate glasses. J. Non-Cryst. Solids 2016, 451, 101–110. [Google Scholar] [CrossRef]
- Bray, P.J. NMR and NQR studies of boron in vitreous and crystalline borates. Inorg. Chim. Acta 1999, 289, 158–173. [Google Scholar] [CrossRef]
- Wu, J.; Stebbins, J.F. Cation Field Strength Effects on Boron Coordination in Binary Borate Glasses. J. Am. Ceram. Soc. 2014, 97, 2794–2801. [Google Scholar] [CrossRef]
- Lelong, G.; Cormier, L.; Hennet, L.; Michel, F.; Rueff, J.P.; Ablett, J.M.; Monaco, G. Lithium borate crystals and glasses: How similar are they? A non-resonant inelastic X-ray scattering study around the B and O K-edges. J. Non-Cryst. Solids 2017, 472, 1–8. [Google Scholar] [CrossRef] [Green Version]
Compound | UBO | LUBO | NUBO |
---|---|---|---|
formula | UOBO | LiUOBO | NaUOBO |
color | greyish-green | dark yellow | yellow |
space group | mono C2/c | P2/c | Pcam |
a (Å) | 12.515 (1) | 5.772 (1) | 10.735 (1) |
b (Å) | 4.189 (1) | 10.581 (1) | 5.788 (1) |
c (Å) | 10.478 (1) | 6.838 (1) | 6.869 (1) |
(deg) | 90 | 90 | 90 |
(deg) | 122.21 (1) | 105.02 (1) | 90 |
(deg) | 90 | 90 | 90 |
V (Å) | 464.73 (1) | 403.38 (1) | 426.79 (1) |
Bond distances * (Å) | |||
U-O | 1.762 (9) | 1.787 (20) | 1.807 (12) |
U-O | 1.762 (9) | 1.801 (20) | 1.810 (13) |
U-O | 2.382 (6) | 2.282 (20) | 2.273 (10) |
U-O | 2.382 (6) | 2.294 (20) | 2.303 (9) |
U-O | 2.497 (6) | 2.344 (20) | 2.303 (9) |
U-O | 2.497 (6) | 2.398 (20) | 2.411 (8) |
U-O | 2.610 (6) | 2.411 (20) | 2.411 (8) |
U-O | 2.610 (6) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunault, M.O.J.Y.; Menut, D.; Tougait, O. Alkali Uranyl Borates: Bond Length, Equatorial Coordination and 5f States. Crystals 2021, 11, 56. https://doi.org/10.3390/cryst11010056
Hunault MOJY, Menut D, Tougait O. Alkali Uranyl Borates: Bond Length, Equatorial Coordination and 5f States. Crystals. 2021; 11(1):56. https://doi.org/10.3390/cryst11010056
Chicago/Turabian StyleHunault, Myrtille O.J.Y., Denis Menut, and Olivier Tougait. 2021. "Alkali Uranyl Borates: Bond Length, Equatorial Coordination and 5f States" Crystals 11, no. 1: 56. https://doi.org/10.3390/cryst11010056
APA StyleHunault, M. O. J. Y., Menut, D., & Tougait, O. (2021). Alkali Uranyl Borates: Bond Length, Equatorial Coordination and 5f States. Crystals, 11(1), 56. https://doi.org/10.3390/cryst11010056