Low-Cost High-Performance SnO2–Cu Electrodes for Use in Direct Ethanol Fuel Cells
Abstract
:1. Introduction
2. Experimental
2.1. The Pre-Treatment of Materials and Chemicals
2.2. Electrochemical Characterization
2.3. Physical Characterization
3. Results and Discussions
3.1. Cyclic Voltammetry Study
3.2. Chronoamperometry Study
3.3. Potentiodynamic Polarization Analysis
3.4. EIS Analysis
3.5. Materials Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agnihotri, O.; Mohammad, M.; Abass, A.; Arshak, K. Electrical and optical properties of chemically deposited conducting glass for SIS solar cells. Solid State Commun. 1983, 47, 195–198. [Google Scholar] [CrossRef]
- Summitt, R.; Marley, J.A.; Borrelli, N.F. The ultraviolet absorption edge of stannic oxide (SnO2). J. Phys. Chem. Solids 1964, 25, 1465–1469. [Google Scholar] [CrossRef]
- Ginley, D.S.; Bright, C. Transparent Conducting Oxides. MRS Bull. 2000, 25, 15–18. [Google Scholar] [CrossRef]
- Ginley, D.; Coutts, T.; Perkins, J.; Young, D.; Li, X.; Parilla, P. Next-Generation Transparent Conducting Oxides for Photovoltaic Cells: An Overview. In Proceedings of the MRS Online Proceedings Library, England, UK, January 2001; Volume 668, p. 27. [Google Scholar] [CrossRef]
- Hartnagel, H.L.; Dawar, A.L.; Jain, A.K.; Jagadish, C.J. Semiconducting Transparent Thin Films; CRC Press, IOP: Bristol, UK, 1995; ISBN 10: 9780750303224. [Google Scholar]
- Shoyama, M.; Hashimoto, N. Effect of poly ethylene glycol addition on the microstructure and sensor characteristics of SnO2 thin films prepared by sol–gel method. Sens. Actuators B Chem. 2003, 93, 585–589. [Google Scholar] [CrossRef]
- Chang, S.; Leu, I.-C.; Hon, M. Electrodeposition of nanocrystalline SnO2 coatings with two-layer microstructure. J. Cryst. Growth 2004, 273, 195–202. [Google Scholar] [CrossRef]
- Yuan, X.; Cao, L.; Wan, H.; Zeng, G.; Xi, S. Study on the self-packing of SnO2 nanoparticles at the air–hydrosol interface and its composite LB films with arachidic acid. Thin Solid Film. 1998, 327–329, 33–36. [Google Scholar] [CrossRef]
- Santos, L.R.B.; Chartier, T.; Pagnoux, C.; Baumard, J.F.; Santillii, C.V.; Pulcinelli, S.H.; Larbot, A. Tin oxide nanoparticle formation using a surface modifying agent. J. Eur. Ceram. Soc. 2004, 24, 3713–3721. [Google Scholar] [CrossRef]
- Udawatte, C.P.; Kakihana, M.; Yoshimura, M. Preparation of pure perovskite-type BaSnO3 powders by the polymerized complex method at reduced temperature. Solid State Ion. 1998, 108, 23–30. [Google Scholar] [CrossRef]
- Sergent, N.; Gélin, P.; Périer-Camby, L.; Praliaud, H.; Thomas, G. Preparation and characterisation of high surface area stannic oxides: Structural, textural and semiconducting properties. Sens. Actuators B Chem. 2002, 84, 176–188. [Google Scholar] [CrossRef]
- Ibarguen, C.A.; Mosquera, A.; Parra, R.; Castro, M.; Rodríguez-Páez, J. Synthesis of SnO2 nanoparticles through the controlled precipitation route. Mater. Chem. Phys. 2007, 101, 433–440. [Google Scholar] [CrossRef]
- Cullity, B.D.; Weymouth, J.W. Elements of X-Ray Diffraction. Am. J. Phys. 1957, 25, 394–395. [Google Scholar]
- Izaki, M.; Omi, T. Electrolyte Optimization for Cathodic Growth of Zinc Oxide Films. J. Electrochem. Soc. 1996, 143, L53–L55. [Google Scholar] [CrossRef]
- Peulon, S.; Lincot, D. Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Adv. Mater. 1996, 8, 166–170. [Google Scholar] [CrossRef]
- Zhitomirsky, I.; Gal-Or, L.; Kohn, A.; Hennicke, H.W. Electrodeposition of ceramic films from non-aqueous and mixed solutions. J. Mater. Sci. 1995, 30, 5307–5312. [Google Scholar] [CrossRef]
- Bohannan, E.W.; Jaynes, C.C.; Shumsky, M.G.; Barton, J.K.; Switzer, J.A. Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth(III) oxide. Solid State Ion. 2000, 131, 97–107. [Google Scholar] [CrossRef]
- Yao, J.; Chen, P.; Fujishima, A. Electrochromic behavior of electrodeposited tungsten oxide thin films. J. Electroanal. Chem. 1996, 406, 223–226. [Google Scholar] [CrossRef]
- Dierstein, A.; Natter, H.; Meyer, F.; Stephan, H.-O.; Kropf, C.; Hempelmann, R. Electrochemical deposition under oxidizing conditions (EDOC): A new synthesis for nanocrystalline metal oxides. R. Scr. Mater. 2001, 44, 2209–2212. [Google Scholar] [CrossRef]
- Chang, S.T.; Leu, I.C.; Hon, M.H. Preparation and characterization of nanostructured tin oxide films by electrochemical deposition. Electrochem. Solid-State Lett. 2002, 5, C71–C74. [Google Scholar] [CrossRef]
- Zheng, M.; Li, G.; Zhang, X.; Huang, S.; Lei, Y.; Zhang, L. Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chem. Mater. 2001, 13, 3859–3861. [Google Scholar] [CrossRef]
- Zhitomirsky, I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundam. Asp. Adv. Colloid Interface Sci. 2002, 97, 279–317. [Google Scholar] [CrossRef]
- Abdo, H.S.; Sherif, E.-S.M.; El-Serehy, H.A. Manufacturing of Ti-6%Al and Ti-6%Al-4%V Alloys and Their Corrosion in Sodium Chloride Solutions. Crystals 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Pauporté, T.; Lincot, D. Electrodeposition of semiconductors for optoelectronic devices: Results on zinc oxide. Electrochim. Acta 2000, 45, 3345–3353. [Google Scholar] [CrossRef]
- Qiu, X.-F.; Zhu, J.-J.; Chen, H.-Y. Controllable synthesis of nanocrystalline gold assembled whiskery structures via sonochemical route. J. Cryst. Growth 2003, 257, 378–383. [Google Scholar] [CrossRef]
- Li, N.; Charles, R. Martin and Bruno Scrosati, A High-Rate, High-Capacity, Nanostructured Tin Oxide Electrode. Electrochem. Solid State Lett. 2000, 3, 316. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.-C.; Zhang, J.; Lu, Y.; Shen, D.; Fan, X.; Kong, X. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Cryst. Growth 2003, 254, 80–85. [Google Scholar] [CrossRef]
- Baik, N.S.; Sakai, G.; Shimanoe, K.; Miura, N.; Yamazoe, N. Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity. Sens. Actuators B Chem. 2000, 65, 97–100. [Google Scholar] [CrossRef]
- Singh, A.; Aswal, D.K.; Viswanadham, C.; Goswami, G.; Gupta, L.; Gupta, S.; Yakhmi, J.V. Enhanced magnetoresistance in nanocrystalline La0.6Pb0.4MnO3 thin films. J. Cryst. Growth 2002, 244, 313–317. [Google Scholar] [CrossRef]
- Chavez, K.L.; Hess, D.W. A Novel Method of Etching Copper Oxide Using Acetic Acid. J. Electrochem. Soc. 2001, 148, G640–G643. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Mitsushima, S.; Ishihara, A.; Matsuzawa, K.; Ota, K.-I. Pt-Ir-SnO2/C Electrocatalysts for Ethanol Oxidation in Acidic Media. Chin. J. Catal. 2011, 32, 1856–1863. [Google Scholar] [CrossRef]
- Abdo, H.S.; Seikh, A.H.; Mohammed, J.A.; Luqman, M.; Ragab, S.A.; Almotairy, S.M. Influence of Chloride Ions on Electrochemical Corrosion Behavior of Dual-Phase Steel over Conventional Rebar in Pore Solution. Appl. Sci. 2020, 10, 4568. [Google Scholar] [CrossRef]
- Abdo, H.S.; Seikh, A.H.; Mandal, B.B.; Mohammed, J.A.; Ragab, S.A.; Abdo, M.S. Microstructural Characterization and Corrosion-Resistance Behavior of Dual-Phase Steels Compared to Conventional Rebar. Crystals 2020, 10, 1068. [Google Scholar] [CrossRef]
- Singh, A.K.; Shukla, S.K.; Singh, M.; Quraishi, M. Inhibitive Effect of Ceftazidime on Corrosion of Mild Steel in Hydrochloric Acid Solution. Mater. Chem. Phys. 2011, 129, 68–76. [Google Scholar] [CrossRef]
- El Azhar, M.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrenée, M. Corrosion Inhibition of Mild Steel by the New Class of Inhibitors [2,5- Bis(n-Pyridyl)-1,3,4-Thiadiazoles] in Acidic Media. Corros. Sci. 2001, 43, 2229–2238. [Google Scholar] [CrossRef]
- Macdonald, J.R.; Johnson, W.B. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley: New York, NY, USA, 1987; ISBN 978-0-471-64749-2. [Google Scholar]
Sample Name | icorr(A/cm2) | Ecorr(V) |
---|---|---|
As-received Cu | 3 × 10−6 | −3.56 × 10−1 |
10 min | 7 × 10−5 | 3.24 × 10−1 |
15 min | 1.5 × 10−4 | −3.29 × 10−1 |
20 min | 2.5 × 10−3 | −3.67 × 10−1 |
Sample Name | Rct (Ohm cm2) | n |
---|---|---|
As-received Cu | 32.2 | 0.762 |
10 min | 14.6 | 0.778 |
15 min | 8.7 | 0.858 |
20 min | 5.4 | 0.828 |
Sample | Element | Weight% | Atom% |
---|---|---|---|
10 min | O | 26.48 | 68.06 |
Sn | 73.52 | 31.94 | |
15 min | O | 20.50 | 63.30 |
Sn | 79.50 | 36.70 | |
20 min | O | 18.30 | 61.42 |
Sn | 81.7 | 38.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdo, H.S.; Sarkar, A.; Gupta, M.; Sahoo, S.; Mohammed, J.A.; Ragab, S.A.; Seikh, A.H. Low-Cost High-Performance SnO2–Cu Electrodes for Use in Direct Ethanol Fuel Cells. Crystals 2021, 11, 55. https://doi.org/10.3390/cryst11010055
Abdo HS, Sarkar A, Gupta M, Sahoo S, Mohammed JA, Ragab SA, Seikh AH. Low-Cost High-Performance SnO2–Cu Electrodes for Use in Direct Ethanol Fuel Cells. Crystals. 2021; 11(1):55. https://doi.org/10.3390/cryst11010055
Chicago/Turabian StyleAbdo, Hany S., Amit Sarkar, Madhu Gupta, Suvadra Sahoo, Jabair A. Mohammed, Sameh A. Ragab, and Asiful H. Seikh. 2021. "Low-Cost High-Performance SnO2–Cu Electrodes for Use in Direct Ethanol Fuel Cells" Crystals 11, no. 1: 55. https://doi.org/10.3390/cryst11010055
APA StyleAbdo, H. S., Sarkar, A., Gupta, M., Sahoo, S., Mohammed, J. A., Ragab, S. A., & Seikh, A. H. (2021). Low-Cost High-Performance SnO2–Cu Electrodes for Use in Direct Ethanol Fuel Cells. Crystals, 11(1), 55. https://doi.org/10.3390/cryst11010055