Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Baker, A.; Guo, J.; Randall, C.A. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process. ACS Nano 2016, 10, 10606–10614. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, J.; Baker, A.; Randall, C.A. Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering. ACS Appl. Mater. Interfaces 2016, 8, 20909–20915. [Google Scholar] [CrossRef] [PubMed]
- Maria, J.-P.; Kang, X.; Floyd, R.; Dickey, E.C.; Guo, H.; Guo, J.; Baker, A.; Funihashi, S.; Randall, C.A. Cold sintering: Current status and prospects. J. Mater. Res. 2017, 32, 3205–3218. [Google Scholar] [CrossRef] [Green Version]
- Chaim, R.; Levin, M.; Shlayer, A.; Estournès, C. Sintering and densification of nanocrystalline ceramic oxide powders: A review. Adv. Appl. Ceram. 2008, 107, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-L.; Chen, I.-W. Sintering of Fine Oxide Powders: II, Sintering Mechanisms. J. Am. Ceram. Soc. 1997, 80, 637–645. [Google Scholar] [CrossRef]
- Funahashi, S.; Guo, J.; Guo, H.; Wang, K.; Baker, A.L.; Shiratsuyu, K.; Randall, C.A. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 2017, 100, 546–553. [Google Scholar] [CrossRef]
- Guo, J.; Floyd, R.; Lowum, S.; Maria, J.-P.; De Beauvoir, T.H.; Seo, J.-H.; Randall, C.A. Cold Sintering: Progress, Challenges, and Future Opportunities. Annu. Rev. Mater. Res. 2019, 49, 275–295. [Google Scholar] [CrossRef]
- Biesuz, M.; Taveri, G.; Duff, A.I.; Olevsky, E.; Zhu, D.; Hu, C.; Grasso, S. A theoretical analysis of cold sintering. Adv. Appl. Ceram. 2020, 119, 75–89. [Google Scholar] [CrossRef]
- Ndayishimiye, A.; Sengul, M.Y.; Bang, S.H.; Tsuji, K.; Takashima, K.; De Beauvoir, T.H.; Denux, D.; Thibaud, J.-M.; Van Duin, A.C.; Elissalde, C.; et al. Comparing hydrothermal sintering and cold sintering process: Mechanisms, microstructure, kinetics and chemistry. J. Eur. Ceram. Soc. 2020, 40, 1312–1324. [Google Scholar] [CrossRef]
- Kang, X.; Floyd, R.; Lowum, S.; Cabral, M.J.; Dickey, E.C.; Maria, J.-P. Mechanism studies of hydrothermal cold sintering of zinc oxide at near room temperature. J. Am. Ceram. Soc. 2019, 102, 4459–4469. [Google Scholar] [CrossRef]
- Ndayishimiye, A.; Largeteau, A.; Mornet, S.; Duttine, M.; Dourges, M.-A.; Denux, D.; Verdier, M.; Gouné, M.; De Beauvoir, T.H.; Elissalde, C.; et al. Hydrothermal Sintering for Densification of Silica. Evidence for the Role of Water. J. Eur. Ceram. Soc. 2018, 38, 1860–1870. [Google Scholar] [CrossRef]
- Guo, H.; Baker, A.; Guo, J.; Randall, C.A. Cold Sintering Process: A Novel Technique for Low-Temperature Ceramic Processing of Ferroelectrics. J. Am. Ceram. Soc. 2016, 99, 3489–3507. [Google Scholar] [CrossRef]
- Dargatz, B.; Gonzalez-Julian, J.; Bram, M.; Shinoda, Y.; Wakai, F.; Guillon, O. FAST/SPS sintering of nanocrystalline zinc oxide—Part II: Abnormal grain growth, texture and grain anisotropy. J. Eur. Ceram. Soc. 2016, 36, 1221–1232. [Google Scholar] [CrossRef]
- Dargatz, B.; Gonzalez-Julian, J.; Bram, M.; Jakes, P.; Besmehn, A.; Schade, L.; Röder, R.; Ronning, C.; Guillon, O. FAST/SPS sintering of nanocrystalline zinc oxide—Part I: Enhanced densification and formation of hydrogen-related defects in presence of adsorbed water. J. Eur. Ceram. Soc. 2016, 36, 1207–1220. [Google Scholar] [CrossRef]
- Gonzalez-Julian, J.; Neuhaus, K.; Bernemann, M.; Da Silva, J.P.; Laptev, A.; Bram, M.; Guillon, O. Unveiling the mechanisms of cold sintering of ZnO at 250 °C by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy. Acta Mater. 2018, 144, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Grasso, S.; Biesuz, M.; Zoli, L.; Taveri, G.; Duff, A.I.; Ke, D.; Jiang, A.; Reece, M.J. A review of cold sintering processes. Adv. Appl. Ceram. 2020, 119, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Ivakin, Y.; Danchevskaya, M.; Kholodkova, A.; Muravieva, G.; Rybalchenko, V. Recrystallization of fine-crystalline barium titanate in low-density water medium. J. Supercrit. Fluids 2020, 159, 104771. [Google Scholar] [CrossRef]
- Ivakin, Y.D.; Danchevskaya, M.N. Analysis of Recrystallization of Fine-Crystalline Corundum in a Supercritical Water Medium Using the Lognormal Particle Size Distribution Function. Russ. J. Phys. Chem. B 2018, 12, 1205–1211. [Google Scholar] [CrossRef]
- Ivakin, Y.D.; Danchevskaya, M.N.; Muravieva, G.P. Recrystallization of Zinc Oxide in a Sub- and Supercritical Water Medium. Russ. J. Phys. Chem. B 2019, 13, 1189–1200. [Google Scholar] [CrossRef]
- Bagwell, R.B.; Messing, G.L. Effect of Seeding and Water Vapor on the Nucleation and Growth of α-Al2O3 from γ-Al2O3. J. Am. Ceram. Soc. 1999, 82, 825–832. [Google Scholar] [CrossRef]
- Lazarev, V.B.; Panasyuk, G.P.; Voroshilov, I.L.; Boudova, G.P.; Danchevskaya, M.N.; Torbin, S.N.; Ivakin, Y.D. New Ecologically Pure Technologies of Fine-Crystalline Materials. Ind. Eng. Chem. Res. 1996, 35, 3721–3725. [Google Scholar] [CrossRef]
- Danchevskaya, M.; Torbin, S.; Muravieva, G.; Ovchinnikova, O.; Ivakin, Y. Synthesis and investigation of crystalline modifications of silicon dioxide. React. Solids 1988, 5, 293–303. [Google Scholar] [CrossRef]
- Danchevskaya, M.N.; Ivakin, Y.D.; Torbin, S.N.; Panasyuk, G.P.; Belan, V.N.; Voroshilov, I.L. Scientific basis of technology of fine-crystalline quartz and corundum. High Press. Res. 2001, 20, 229–239. [Google Scholar] [CrossRef]
- Branson, D.L. Kinetics and Mechanism of the Reaction Between Zinc Oxide and Aluminum Oxide. J. Am. Ceram. Soc. 1965, 48, 591–595. [Google Scholar] [CrossRef]
- Ivakin, Y.D.; Danchevskaya, M.N.; Ovchinnikova, O.G.; Muravieva, G.P. Thermovaporous synthesis of fine crystalline gahnite (ZnAl2O4). J. Mater. Sci. 2006, 41, 1377–1383. [Google Scholar] [CrossRef]
- Kholodkova, A.; Danchevskaya, M.; Ivakin, Y.; Smirnov, A.; Ponomarev, S.; Fionov, A.; Kolesov, V. Solid state synthesis of barium titanate in air and in supercritical water: Properties of powder and ceramics. Ceram. Int. 2019, 45, 23050–23060. [Google Scholar] [CrossRef]
- Cunha-Duncan, F.N.; Bradt, R.C. Synthesis of Magnesium Aluminate Spinels from Bauxites and Magnesias. J. Am. Ceram. Soc. 2004, 85, 2995–3003. [Google Scholar] [CrossRef]
- Yang, L.; Xiao, G.; Ding, D.; Li, P.; Lv, L.H.; Yang, S.L. Soild-phase synthesis of MgAl2O4 powder in reducing atmosphere: Effects of alumina sources and addition of carbon black. Mater. Res. Express 2019, 6, 045007. [Google Scholar] [CrossRef]
- Danchevskaya, M.N.; Ivakin Yu., D.; Muravieva, G.P. Synthetic Magnesium Spinel—Raw Material for Optical Ceramics. In Proceedings of the 14th European Meeting on Supercritical Fluids, Marseille, France, 18–21 May 2014. [Google Scholar]
- Kayani, Z.N.; Saleemi, F.; Batool, I. Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys. A 2015, 119, 713–720. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Y.; Zhang, Y.; Hahn, S.H.; Kim, E.J. From Zn(OH)2 to ZnO: A study on the mechanism of phase transformation. CrystEngComm 2011, 13, 6024–6026. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Das, P.P.; Maity, S.; Ghosh, P.; Devi, P.S. Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 128–138. [Google Scholar] [CrossRef]
- Ivakin, Y.D.; Smirnov, A.V.; Tarasovskii, V.P.; Rybal’Chenko, V.V.; Vasin, A.A.; Kholodkova, A.A.; Kormilitsin, M.N. Cold Sintering of ZnO Ceramic in Water Medium: Test Demonstration. Glas. Ceram. 2019, 76, 210–215. [Google Scholar] [CrossRef]
- Egbuchunam, T.; Balkose, D. Effect of Supercritical Ethanol Drying on the Properties of Zinc Oxide Nanoparticles. Dry. Technol. 2012, 30, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Vukalovich, M.P.; Rivkin, S.L. Thermophysical Properties of Water and Water Vapor; Mashinostroyeniye: Moscow, Russia, 1967; pp. 1–160. [Google Scholar]
- Ali, M.; Winterer, M. ZnO Nanocrystals: Surprisingly ‘Alive’. Chem. Mater. 2010, 22, 85–91. [Google Scholar] [CrossRef]
- Thurber, A.P.; Alanko, G.A.; Beausoleil, G.L.; Dodge, K.N.; Hanna, C.B.; Punnoose, A. Unusual crystallite growth and modification of ferromagnetism due to aging in pure and doped ZnO nanoparticles. J. Appl. Phys. 2012, 111, 7. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Zhang, Y.; Chan, J.M.; Huang, R.; Luo, J. Water-assisted flash sintering: Flashing ZnO at room temperature to achieve ~98% density in seconds. Scr. Mater. 2018, 142, 79–82. [Google Scholar] [CrossRef]
- Dargatz, B.; Gonzalez-Julian, J.; Guillon, O. Anomalous coarsening of nanocrystalline zinc oxide particles in humid air. J. Cryst. Growth 2015, 419, 69–78. [Google Scholar] [CrossRef]
- Meyer, B.; Marx, D.; Dulub, O.; Diebold, U.; Kunat, M.; Langenberg, D.; Wöll, C. Partial Dissociation of Water Leads to Stable Superstructures on the Surface of Zinc Oxide. Angew. Chem. Int. Ed. 2004, 43, 6641–6645. [Google Scholar] [CrossRef]
- Wang, Y.; Muhler, M.; Wöll, C.; Wöll, C. Spectroscopic evidence for the partial dissociation of H2O on ZnO(100). Phys. Chem. Chem. Phys. 2006, 8, 1521–1524. [Google Scholar] [CrossRef]
- Kenmoe, S.; Biedermann, P.U. Water aggregation and dissociation on the ZnO(100) surface. Phys. Chem. Chem. Phys. 2017, 19, 1466–1486. [Google Scholar] [CrossRef] [Green Version]
- Newberg, J.T.; Goodwin, C.; Arble, C.; Khalifa, Y.; Boscoboinik, J.A.; Rani, S. ZnO(100) Surface Hydroxylation under Ambient Water Vapor. J. Phys. Chem. B 2017, 122, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Schwarz, P.; Nefedov, A.; Meyer, B.; Wang, Y.; Wöll, C. Structural Evolution of Water on ZnO(100): From Isolated Monomers via Anisotropic H-Bonded 2D and 3D Structures to Isotropic Multilayers. Angew. Chem. Int. Ed. 2019, 58, 17751–17757. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, V.; Hellström, M.; Behler, J. Proton-Transfer Mechanisms at the Water–ZnO Interface: The Role of Presolvation. J. Phys. Chem. Lett. 2017, 8, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Ramabhadran, R.O.; Mayhall, N.J.; Raghavachari, K. Proton Hop Paving the Way for Hydroxyl Migration: Theoretical Elucidation of Fluxionality in Transition-Metal Oxide Clusters. J. Phys. Chem. Lett. 2010, 1, 3066–3071. [Google Scholar] [CrossRef]
Transformation | Without Water, °С | TVT in the Aquatic Environment, °С | ||
---|---|---|---|---|
2Al(OH)3 2AlOOH | → → | α-Al2O3 | 1100–1200 [20] | 400 [21,22,23] |
ZnO + Al2O3 | → | ZnAl2O4 | 800 [24] | 180 [25] |
BaO + TiO2 | → | BaTiO3 | 1300 [26] | 200 [17] |
MgO + Al2O3 | → | MgAl2O4 | 1400 [27,28] | 400 [29] |
ZnO | → | recrystal. ZnO | 650–750 [30] | 100 [19] |
Sample # | Additive; mol% | Pressing (Compaction, 1 h), MPa | Pressing (Dwell), MPa | Т Dwell, °С | Dwell Time, min |
---|---|---|---|---|---|
CSP1 | Zn(Ac)2·2H2O; 0.185 | 396 | 77 | 220 | 60 |
CSP2 | Zn(Ac)2·2H2O; 0.927 | 396 | 77 | 255 | 60 |
CSP3 | NH4Cl; 4.56 | 396 | 396 | 246 | 60 |
CSP4 | NH4Cl; 7.6 | 396 | 396 | 255 | 60 |
Sample # | Additive; mol% | Water Inside the Container; mL | Water Outside Container; mL | Vapor Pressure; MPa | Т; °С | Dwell Time; h |
---|---|---|---|---|---|---|
TVT1 | Zn(Ac)2·2H2O; 0.185 | - | 1 | 3.46 | 240 | 26 |
TVT2 | Zn(Ac)2·2H2O; 0.927 | - | 1 | 3.46 | 240 | 24 |
TVT3 | NH4Cl; 4.56 | - | 1 | 3.46 | 240 | 14 |
TVT4 | NH4Cl; 7.6 | - | 1 | 3.46 | 240 | 14 |
Sample | Additive; mol% | Mean Grain Size, μm | Relative Density |
CSP1 | Zn(Ac)2·2H2O; 0.185 | 0.244 ± 0.002 | 0.83 ± 0.02 |
CSP2 | Zn(Ac)2·2H2O; 0.927 | 0.799 ± 0.011 | 0.96 ± 0.02 |
CSP3 | NH4Cl; 4.56 | 0.264 ± 0.002 | 0.82 ± 0.02 |
CSP4 | NH4Cl; 7.6 | 0.382 ± 0.004 | 0.91 ± 0.02 |
Sample | Additive; mol% | Mean Crystal Size, μm | |
TVT1 | Zn(Ac)2·2H2O; 0.185 | 0.316 ± 0.003 | |
TVT2 | Zn(Ac)2·2H2O; 0.927 | 0.355 ± 0.004 | |
TVT3 | NH4Cl; 4.56 | 0.386 ± 0.003 | |
TVT4 | NH4Cl; 7.6 | 0.383 ± 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivakin, Y.; Smirnov, A.; Kholodkova, A.; Vasin, A.; Kormilicin, M.; Kornyushin, M.; Stolyarov, V. Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample. Crystals 2021, 11, 71. https://doi.org/10.3390/cryst11010071
Ivakin Y, Smirnov A, Kholodkova A, Vasin A, Kormilicin M, Kornyushin M, Stolyarov V. Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample. Crystals. 2021; 11(1):71. https://doi.org/10.3390/cryst11010071
Chicago/Turabian StyleIvakin, Yurii, Andrey Smirnov, Anastasia Kholodkova, Alexander Vasin, Mikhail Kormilicin, Maxim Kornyushin, and Vladimir Stolyarov. 2021. "Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample" Crystals 11, no. 1: 71. https://doi.org/10.3390/cryst11010071
APA StyleIvakin, Y., Smirnov, A., Kholodkova, A., Vasin, A., Kormilicin, M., Kornyushin, M., & Stolyarov, V. (2021). Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample. Crystals, 11(1), 71. https://doi.org/10.3390/cryst11010071