Mechanical Properties of Graphene Oxide Coupled by Multi-Physical Field: Grain Boundaries and Functional Groups
Abstract
:1. Introduction
2. Methodology
2.1. Force Field
2.2. Model Construction and Simulation Procedure
3. Results and Discussion
3.1. Validation of Model
3.2. Influence of Grain Boundaries (GBs)
3.3. Influence of Functional Groups
3.3.1. Oxygen-Containing Functional Groups Densities
3.3.2. Composition of Functional Groups
3.3.3. Distribution of Functional Groups
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Liu, Z.S. Spontaneous rolling-up and assembly of graphene designed by using defects. Nanoscale 2018, 10, 6487–6495. [Google Scholar] [CrossRef] [PubMed]
- He, L.C.; Guo, S.S.; Lei, J.C.; Sha, Z.; Liu, Z. The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets—A molecular dynamics study. Carbon 2014, 75, 124–132. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, J.C.; Liu, Z.S. Molecular dynamics study on the anisotropic Poisson’s ratio of the graphene. Diam. Relat. Mater. 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 2016, 116, 5464–5519. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.B.; Geng, Y.; Wang, S.J.; Li, Z.; Kim, J.-K. Effects of functional group on the mechanical and wrinkling properties of graphene sheets. Carbon 2010, 48, 4315–4322. [Google Scholar] [CrossRef]
- Cao, R.; Chen, Z.; Wu, Y.H.; Tu, Y.; Wu, G.; Yang, X. Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties. Compos. Part A 2017, 93, 100–106. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Y.J. Tension dynamics of graphene oxide and peculiar change of yield strain. Appl. Nanoence 2020, 10, 1825–1831. [Google Scholar] [CrossRef]
- Nardelli, M.B.; Fattebert, J.L.; Orlikowski, D.; Roland, C.; Zhao, Q.; Bernholc, J. Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 2000, 38, 1703–1711. [Google Scholar] [CrossRef]
- Han, J.; Ryu, S.; Sohn, D.; Im, S. Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene. Carbon 2014, 68, 250–257. [Google Scholar] [CrossRef]
- Grantab, R.; Shenoy, V.B.; Ruoff, R.S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Artyukhov, V.I.; Yakobson, B.I.; Xu, Z. Pseudo hall-petch strength reduction in polycrystalline graphene. Nano Lett. 2013, 13, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-H.; Cooper, R.C.; An, S.J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A.G.; Lee, C.; Crawford, B.; Oliver, W.; et al. High-strength chemical-vapor deposited graphene and grain boundaries. Science 2013, 340, 1073–1076. [Google Scholar] [CrossRef]
- Rasool, H.I.; Ophus, C.; Klug, W.S.; Zettl, A.; Gimzewski, J.K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nature Commun. 2013, 4, 2811. [Google Scholar] [CrossRef]
- Cao, C.H.; Daly, M.; Singh, C.V.; Sun, Y.; Filleter, T. High strength measurement of monolayer graphene oxide. Carbon 2015, 81, 497–504. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Y.J.; Ma, F. Interlayer spacing of multilayer graphene oxide: Influences of oxygen-containing group density, thickness, temperature and strain. Appl. Surf. Sci. 2020, 529, 147075. [Google Scholar] [CrossRef]
- Hou, D.S.; Yang, T.J. A reactive molecular dynamics study of graphene oxide sheets in different saturated states: Structure, reactivity and mechanical properties. Phys. Chem. Chem. Phys. 2018, 20, 11053–11066. [Google Scholar] [CrossRef]
- Van Duin AC, T.; Dasgupta, S.; Lorant, F.; Goddard, W. ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef] [Green Version]
- Chenoweth, K.; Van Duin, A.C.; Goddard, W.A. ReaxFF reactive force field formolecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef] [Green Version]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef]
- Devanathan, R.; Chase-Woods, D.; Shin, Y.; Gotthold, D.W. Molecular dynamics simulations reveal that water diffusion between graphene oxide layers is slow. Sci. Rep. 2016, 6, 29484. [Google Scholar] [CrossRef]
- Bagri, A.; Grantab, R.; Medhekar, N.; Shenoy, V. Stability and formation mechanisms of carbonyl-and hydroxyldecorated holes in graphene oxide. J. Phys. Chem. C 2010, 114, 12053–12061. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, Y.J.; Ma, F.; Lu, Y.; Zhao, T. Pyrolysis mechanisms of graphene oxide revealed by ReaxFF molecular dynamics simulation. Appl. Surf. Sci. 2020, 509, 145247. [Google Scholar] [CrossRef]
- Yao, W.J.; Fan, L. The effect of ion irradiation induced defects on mechanical properties of graphene/copper layered nanocomposites. Metals 2019, 9, 733. [Google Scholar] [CrossRef] [Green Version]
- Pei, Q.X.; Zhang, Y.W.; Shenoy, V.B. A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 2010, 48, 898–904. [Google Scholar] [CrossRef]
- Sadeghzadeh, S.; Rezapour, N. The mechanical design of graphene nanodiodes and nanotransistors: Geometry, temperature and strain effects. RSC Adv. 2016, 6, 86324–86333. [Google Scholar] [CrossRef]
- Yao, W.J.; Fan, L. Research on the correlation of mechanical properties of BN–graphene–BN/BN vertically-stacked nanostructures in the presence of interlayer sp3 bonds and nanopores with temperature. Phys. Chem. Chem. Phys. 2020, 22, 5920–5928. [Google Scholar] [CrossRef]
- Zhao, S.J.; Xue, J.M. Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. J. Phys. D 2013, 46, 135303. [Google Scholar] [CrossRef]
- Yi, L.J.; Yin, Z.N.; Zhang, Y.Y.; Chang, T. A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene. Carbon 2013, 51, 373–380. [Google Scholar] [CrossRef]
- Liu, T.H.; Pao, C.W.; Chang, C.C. Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon 2012, 50, 3465–3472. [Google Scholar] [CrossRef]
- Tavakol, M.; Montazeri, A.; Aboutalebi, S.H.; Azgari, R. Mechanical properties of graphene oxide: The impact of functional groups. Appl. Surf. Sci. 2020, 525, 146554. [Google Scholar] [CrossRef]
Total Number of Carbon Atoms | Functional Groups Densities R | Number of Epoxy Groups | Number of Hydroxyl Groups | Ultimate Stress (Gpa) | Ultimate Strain | |
---|---|---|---|---|---|---|
PGO-1 | 1481 | 30% | 222 | 0 | 38 | 0.14 |
PGO-2 | 1481 | 30% | 148 | 148 | 41 | 0.14 |
PGO-3 | 1481 | 30% | 0 | 444 | 44 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, Z.; Yao, W. Mechanical Properties of Graphene Oxide Coupled by Multi-Physical Field: Grain Boundaries and Functional Groups. Crystals 2021, 11, 62. https://doi.org/10.3390/cryst11010062
Xu X, Zhang Z, Yao W. Mechanical Properties of Graphene Oxide Coupled by Multi-Physical Field: Grain Boundaries and Functional Groups. Crystals. 2021; 11(1):62. https://doi.org/10.3390/cryst11010062
Chicago/Turabian StyleXu, Xu, Zeping Zhang, and Wenjuan Yao. 2021. "Mechanical Properties of Graphene Oxide Coupled by Multi-Physical Field: Grain Boundaries and Functional Groups" Crystals 11, no. 1: 62. https://doi.org/10.3390/cryst11010062
APA StyleXu, X., Zhang, Z., & Yao, W. (2021). Mechanical Properties of Graphene Oxide Coupled by Multi-Physical Field: Grain Boundaries and Functional Groups. Crystals, 11(1), 62. https://doi.org/10.3390/cryst11010062