Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications
Abstract
:1. Introduction
2. Waveguide Topology and Microwave Characterization of Adhesives
2.1. Dielectric Image Guide Topology for LC-Based Components
2.2. Adhesive Selection
3. Temperature Characterization
3.1. Measurement Setup
3.2. Measurement Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DIG | Dielectric image guide |
FoM | Figure-of-merit |
IL | Insertion loss (IL = ) |
LC | Liquid crystal |
mmW | Millimeter wave |
NRW | Nicholson–Ross–Weir |
PCB | Printed circuit board |
References
- Zografopoulos, D.C.; Ferraro, A.; Beccherelli, R. Liquid-Crystal High-Frequency Microwave Technology: Materials and Characterization. Adv. Mater. Technol. 2018, 4, 1800447. [Google Scholar] [CrossRef]
- Fritzsch, C.; Wittek, M. Recent developments in liquid crystals for microwave applications. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1217–1218. [Google Scholar] [CrossRef]
- Weickhmann, C.; Jakoby, R.; Constable, E.; Lewis, R.A. Time-domain spectroscopy of novel nematic liquid crystals in the terahertz range. In Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013; pp. 1–2. [Google Scholar] [CrossRef] [Green Version]
- Polat, E.; Reese, R.; Tesmer, H.; Schmidt, S.; Spaeth, M.; Nickel, M.; Schuster, C.; Jakoby, R.; Maune, H. Characterization of Liquid Crystals Using a Temperature-Controlled 60 GHz Resonator. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany, 16–18 July 2019; pp. 19–21. [Google Scholar] [CrossRef]
- Mertelj, A.; Cmok, L.; Sebastián, N.; Mandle, R.J.; Parker, R.R.; Whitwood, A.C.; Goodby, J.W.; Čopič, M. Splay Nematic Phase. Phys. Rev. X 2018, 8, 041025. [Google Scholar] [CrossRef] [Green Version]
- Sebastián, N.; Cmok, L.; Mandle, R.J.; De la Fuente, M.R.; Olenik, I.D.; Čopič, M.; Mertelj, A. Ferroelectric-Ferroelastic Phase Transition in a Nematic Liquid Crystal. Phys. Rev. Lett. 2020, 124, 037801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polat, E.; Reese, R.; Jost, M.; Schuster, C.; Nickel, M.; Jakoby, R.; Maune, H. Tunable Liquid Crystal Filter in Nonradiative Dielectric Waveguide Technology at 60 GHz. IEEE Microw. Wirel. Components Lett. 2019, 29, 44–46. [Google Scholar] [CrossRef]
- Franke, T.; Gaebler, A.; Prasetiadi, A.E.; Jakoby, R. Tunable Ka-band waveguide resonators and a small band band-pass filter based on liquid crystals. In Proceedings of the European Microwave Conference (EuMC), Rome, Italy, 6–9 October 2014; pp. 339–342. [Google Scholar] [CrossRef]
- Maune, H.; Jost, M.; Reese, R.; Polat, E.; Nickel, M.; Jakoby, R. Microwave Liquid Crystal Technology. Crystals 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Nose, T.; Ito, R.; Honma, M. Potential of Liquid-Crystal Materials for Millimeter-Wave Application. Appl. Sci. 2018, 8, 2544. [Google Scholar] [CrossRef] [Green Version]
- Polat, E.; Tesmer, H.; Reese, R.; Nickel, M.; Wang, D.; Schumacher, P.; Jakoby, R.; Maune, H. Reconfigurable Millimeter-Wave Components Based on Liquid Crystal Technology for Smart Applications. Crystals 2020, 10, 346. [Google Scholar] [CrossRef]
- Cudak, M.; Ghosh, A.; Kovarik, T.; Ratasuk, R.; Thomas, T.A.; Vook, F.; Moorut, P. Moving Towards Mmwave-Based Beyond-4G (B-4G) Technology. In Proceedings of the IEEE Vehicular Technology Conference (VTC), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Rappaport, T.S.; Qiao, Y.; Lauffenburger, S.J. Millimeter-Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel Sounder. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Houston, TX, USA, 5–9 December 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Kyro, M.; Ranvier, S.; Kolmonen, V.; Haneda, K.; Vainikainen, P. Long range wideband channel measurements at 81–86 GHz frequency range. In Proceedings of the European Conference on Antennas and Propagation (EuCAP), Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Tesmer, H.; Reese, R.; Polat, E.; Jakoby, R.; Maune, H. Dielectric Image Line Liquid Crystal Phase Shifter at W-Band. In Proceedings of the 2020 German Microwave Conference (GeMiC), Cottbus, Germany, 9–11 March 2020; pp. 156–159. [Google Scholar]
- Tesmer, H.; Reese, R.; Polat, E.; Jakoby, R.; Maune, H. Liquid Crystal Based Parallel-Polarized Dielectric Image Guide Phase Shifter at W-Band. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 305–308. [Google Scholar] [CrossRef]
- King, D.; Schlesinger, S. Dielectric Image Lines. IEEE Trans. Microw. Theory Tech. 1958, 6, 291–299. [Google Scholar] [CrossRef]
- Shindo, S.; Itanami, T. Low-Loss Rectangular Dielectric Image Line for Millimeter-Wave Integrated Circuits. IEEE Trans. Microw. Theory Tech. 1978, 26, 747–751. [Google Scholar] [CrossRef]
- Knox, R. Dielectric Waveguide Microwave Integrated Circuits—An Overview. IEEE Trans. Microw. Theory Tech. 1976, 24, 806–814. [Google Scholar] [CrossRef]
- Dolatsha, N.; Hesselbarth, J. Millimeter-Wave Antenna Array Fed by an Insulated Image Guide Operating in Higher-Order Mode. IEEE Trans. Antennas Propag. 2013, 61, 3369–3373. [Google Scholar] [CrossRef]
- Wu, K.; Cheng, Y.J.; Djerafi, T.; Hong, W. Substrate-Integrated Millimeter-Wave and Terahertz Antenna Technology. Proc. IEEE 2012, 100, 2219–2232. [Google Scholar] [CrossRef]
- Patrovsky, A.; Wu, K. 94-GHz Planar Dielectric Rod Antenna With Substrate Integrated Image Guide (SIIG) Feeding. IEEE Antennas Wirel. Propag. Lett. 2006, 5, 435–437. [Google Scholar] [CrossRef]
- Friedsam, G.; Biebl, E. Precision free-space measurements of complex permittivity of polymers in the W-band. In Proceedings of the 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, 8–13 June 1997; Volume 3, pp. 1351–1354. [Google Scholar] [CrossRef]
- Nicolson, A.M.; Ross, G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Weir, W. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 1974, 62, 33–36. [Google Scholar] [CrossRef]
- Sahin, S.; Nahar, N.K.; Sertel, K. Permittivity and Loss Characterization of SUEX Epoxy Films for mmW and THz Applications. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 397–402. [Google Scholar] [CrossRef]
- Khanal, S.; Kiuru, T.; Mallat, J.; Luukkonen, O.; Räisänen, A.V. Measurement of Dielectric Properties at 75–325 GHz using a Vector Network Analyzer and Full Wave Simulator. Radioengineering 2012, 21, 551–556. [Google Scholar]
- Costa, F.; Borgese, M.; Degiorgi, M.; Monorchio, A. Electromagnetic Characterisation of Materials by Using Transmission/Reflection (T/R) Devices. Electronics 2017, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Jablonski, D. Attenuation Characteristics of Circular Dielectric Waveguide at Millimeter Wavelengths. IEEE Trans. Microw. Theory Tech. 1978, 26, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Saez, A.; Schubler, M.; Krause, C.; Pandel, D.; Rezer, K.; Bogel, G.V.; Benson, N.; Jakoby, R. 3D Printed Alumina for Low-Loss Millimeter Wave Components. IEEE Access 2019, 7, 40719–40724. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesmer, H.; Razzouk, R.; Polat, E.; Wang, D.; Jakoby, R.; Maune, H. Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications. Crystals 2021, 11, 63. https://doi.org/10.3390/cryst11010063
Tesmer H, Razzouk R, Polat E, Wang D, Jakoby R, Maune H. Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications. Crystals. 2021; 11(1):63. https://doi.org/10.3390/cryst11010063
Chicago/Turabian StyleTesmer, Henning, Rani Razzouk, Ersin Polat, Dongwei Wang, Rolf Jakoby, and Holger Maune. 2021. "Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications" Crystals 11, no. 1: 63. https://doi.org/10.3390/cryst11010063
APA StyleTesmer, H., Razzouk, R., Polat, E., Wang, D., Jakoby, R., & Maune, H. (2021). Temperature Characterization of Liquid Crystal Dielectric Image Line Phase Shifter for Millimeter-Wave Applications. Crystals, 11(1), 63. https://doi.org/10.3390/cryst11010063