Ionic Liquids as Protein Crystallization Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garlitz, J.A.; Summers, C.A.; Flowers, R.A.; Borgstahl, G.E.O. Ethylammonium nitrate: A protein crystallization reagent. Acta Cryst. D 1999, 55, 2037–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sey, M.L.; Paley, M.S.; Turner, M.B.; Rogers, R.D. Protein Crystallization Using Room Temperature Ionic Liquids. Cryst. Growth Des. 2007, 7, 787–793. [Google Scholar]
- Judge, R.A.; Takahashi, S.; Longenecker, K.L.; Fry, E.H.; Abad-Zapatero, C.; Chiu, M. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution. Cryst. Growth Des. 2009, 9, 3463–3469. [Google Scholar] [CrossRef]
- Kennedy, D.F.; Drummond, C.J.; Peat, T.S.; Newman, J. Evaluating Protic Ionic Liquids as Protein Crystallization Additives. Cryst. Growth Des. 2011, 11, 1777–1785. [Google Scholar] [CrossRef]
- Hebel, D.; Ürdingen, M.; Hekmat, D.; Weuster-Botz, D. Development and Scale up of High-Yield Crystallization Processes of Lysozyme and Lipase Using Additives. Cryst. Growth Des. 2013, 13, 2499–2506. [Google Scholar] [CrossRef]
- Li, X.X.; Xu, X.D.; Dan, Y.Y.; Zhang, M.L. The crystallization of lysozyme and thaumatin with ionic liquid. Crystallogr. Rep. 2009, 54, 1285–1288. [Google Scholar] [CrossRef]
- Mann, J.P.; McCluskey, A.; Atkin, R. Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—influence of cation modification. Green Chem. 2009, 11, 785–792. [Google Scholar] [CrossRef]
- Buchfink, R.; Tischer, A.; Patil, G.; Rudolph, R.; Lange, C. Ionic liquids as refolding additives: Variation of the anion. J. Biotechnol. 2010, 150, 64–72. [Google Scholar] [CrossRef]
- Yamamoto, E.; Yamaguchi, S.; Nagamune, T. Protein Refolding by N-Alkylpyridinium and N-Alkyl-N-methylpyrrolidinium Ionic Liquids. Appl. Biochem. Biotechnol. 2011, 164, 957–967. [Google Scholar] [CrossRef]
- Reinhard, L.; Mayerhofer, H.; Geerlof, A.; Mueller-Dieckmann, J.; Weiss, M.S. Optimization of protein buffer cocktails using Thermofluor. Acta Cryst. F 2013, 69, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Ericsson, U.B.; Hallberg, B.M.; DeTitta, G.T.; Dekker, N.; Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 2006, 357, 289–298. [Google Scholar] [CrossRef]
- Wang, Z.; Dang, L.; Han, Y.; Jiang, P.; Wei, H. Crystallization Control of Thermal Stability and Morphology of Hen Egg White Lysozyme Crystals by Ionic Liquids. J. Agric. Food Chem. 2010, 58, 5444–5448. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, H.; Han, Y.; Jiang, P.; Zhou, Z. The Effect of Four Imidazolium Ionic Liquids on Hen Egg White Lysozyme Solubility. J. Chem. Eng. Data 2011, 56, 1700–1703. [Google Scholar] [CrossRef]
- Turner, M.B.; Holbrey, J.D.; Spear, S.K.; Pusey Marc, L.; Rogers, R.D. The Effect of Oxygen-Containing Functional Groups on Protein Stability in Ionic Liquid Solutions. In Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities; ACS Symposium Series; Rogers, R.D., Seddon, K.R., Eds.; ACS Publication: Washington, DC, USA, 2004; Volume 902, pp. 233–243. [Google Scholar]
- Amygina, V.; Moiseev, V.; Rodina, E.; Vorobyeva, N.; Popov, A.; Kurilova, S.; Nazarova, T.; Avaeva, S.; Bartunik, H. Reversible Inhibition of Escherichia coli Inorganic Pyrophosphatase by Fluoride: Trapped Catalytic Intermediates in Cryo-crystallographic Studies. J. Mol. Biol. 2007, 366, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Kajander, T.; Kellosalo, J.; Goldman, A. Inorganic pyrophosphatases: One substrate, three mechanisms. FEBS Lett. 2013, 587, 1863–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halonen, P.; Tammenkoski, M.; Niiranen, L.; Parfenyev, A.N.; Goldman, A.; Baykov, A.; Lahti, R. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis. Biochemistry 2005, 44, 4004–4010. [Google Scholar] [CrossRef]
- Kuhn, N.J.; Ward, S. Purification, properties, and multiple forms of a manganese-activated inorganic pyrophosphatase from Bacillus subtilis. Arch. Biochem. Biophys. 1998, 354, 47–56. [Google Scholar] [CrossRef]
- Lee, H.S.; Cho, Y.; Kim, Y.-J.; Lho, T.-O.; Cha, S.-S.; Lee, J.-H.; Kang, S.G. A novel inorganic pyrophosphatase in Thermococcus onnurineus NAFEMS. Microb. Lett. 2009, 300, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Hughes, R.C.; Ng, J. Can small laboratories do structural genomics? Cryst. Growth Des. 2007, 7, 2226–2238. [Google Scholar] [CrossRef]
- Marsic, D.; Hughes, R.; Byrne-Steele, M.; Ng, J. PCR-based gene synthesis to produce recombinant proteins for crystallization. BMC Biotechnol. 2008, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Orsythe, E.; Achari, A.; Pusey, M.L. Trace fluorescent labeling for high-throughput crystallography. Acta Cryst. D 2006, 62, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Pusey, M.; Barcena, J.; Morris, M.; Singhal, A.; Yuan, Q.; Ng, J. Trace fluorescent labeling for protein crystallization. Acta Cryst. F 2015, 71, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinç, I.; Pusey, M.; Aygün, R. Optimizing associative experimental design for protein crystallization screening. IEEE Trans. NanoBiosci. 2016, 15, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodersen, D.E.; Andersen, G.R.; Andersen, C.B.F. MIMER: An Automated Spreadsheet-Based Crystallization System. Acta Cryst. F 2013, 69, 815–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Arcy, A.; Villard, F.; Marsh, M. An automated microseed matrix-screening method for protein crystallization. Acta Cryst. D 2007, 63, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Luft, J.R.; DeTitta, G.T. A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Cryst. D 1999, 55, 988–993. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; López, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2017, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Barton, G.J.; Higgins, D.G. Multiple sequence alignment. In Bioinformatics; Baxevanis, A.D., Bader, G.D., Wishart, D.S., Eds.; Wiley: Hoboken, NJ, USA, 2020; Volume 227, pp. 227–250. [Google Scholar]
- Constantinescu, D.; Weingärtner, H.; Herrmann, C. Protein denaturation by ionic liquids and the Hofmeister series: A case study of aqueous solutions of ribonuclease Angw. Chem. Int. Ed. 2007, 46, 8887–8889. [Google Scholar] [CrossRef]
- Jenkins, H.D.B.; Marcus, Y. Viscosity ß-coefficients of ions in solution. Chem. Rev. 1995, 95, 2695–2794. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Y.; Huang, X.; Qu, Y. A Bioelectrochemical Method for the Quantitative Description of the Hofmeister Effect of Ionic Liquids in Aqueous Solution. J. Phys. Chem. B 2012, 116, 11075–11080. [Google Scholar] [CrossRef]
- Zhao, H.; Olubajo, O.; Song, Z.; Sims, A.L.; Person, T.E.; Lawal, R.A.; Holley, L.A. Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorganic Chem. 2006, 34, 15–25. [Google Scholar] [CrossRef]
- Nostro, P.L.; Ninham, B.W. Hofmeister Phenomena: An Update on Ion Specificity in Biology. Chem. Rev. 2012, 112, 2286–2322. [Google Scholar] [CrossRef]
- Lee, L.L.Y.; Lee, J.C. Thermal stability of proteins in the presence of poly(ethylene glycols). Biochemistry 1987, 26, 7813–7819. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, V.K.; Kalonia, D.S. Effect of polyols on polyethylene glycol (PEG)-induced precipitation of proteins: Impact on solubility, stability and conformation. Int. J. Pharm. 2009, 366, 38–43. [Google Scholar] [CrossRef]
- De Lencastre Novaes, L.C.; Mazzola, P.G.; Pessoa, A., Jr.; Penna, T.C.V. Effect of polyethylene glycol on the thermal stability of green fluorescent protein. Biotechnol. Prog. 2010, 26, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Samanta, N.; Das Mahanta, D.; Hazra, S.; Kumar, G.S.; Mitra, R.K. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie 2014, 104, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. Hofmeister effects: An explanation for the impact of ionic liquids on biocatalysis. J. Biotechnol. 2009, 144, 12–22. [Google Scholar] [CrossRef]
- Fujita, K.; MacFarlane, D.R.; Forsyth, M.; Yoshizawa-Fujita, M.; Murata, K.; Nakamura, N.; Ohno, H. Solubility and Stability of Cytochrome c in Hydrated Ionic Liquids: Effect of Oxo Acid Residues and Kosmotropicity. Biomacromolecules 2007, 8, 2080–2086. [Google Scholar] [CrossRef]
- Akdogan, Y.; Junk, M.J.N.; Hinderberger, D. Effect of Ionic Liquids on the Solution Structure of Human Serum Albumin. Biomacromolecules 2011, 12, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, O.C.; Mancini, E.; Caputo, G.; Vaden, T.D. Quantitative Evaluation of Myoglobin Unfolding in the Presence of Guanidinium Hydrochloride and Ionic Liquids in Solution. J. Phys. Chem. B 2013, 118, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Constatinescu, D.; Herrmann, C.; Weingärtner, H. Patterns of protein unfolding and protein aggregation in ionic liquids. Phys. Chem. Chem. Phys. 2010, 12, 1756–1763. [Google Scholar] [CrossRef]
- Shaposhnikova, A.; Kuty, M.; Chaloupkova, R.; Damborsky, J.; Smatanova, I.K.; Minofar, B.; Prudnikova, T. Stabilization of Haloalkane Dehalogenase Structure by Interfacial Interaction with Ionic Liquids. Crystals 2021, 11, 1052. [Google Scholar] [CrossRef]
IL | Abbreviation | Source |
---|---|---|
1-Ethyl-3-methylimidazolium chloride | C2[mim]-Cl | Fluka |
1-Butyl-3-methylimidazolium chloride | C4[mim]-Cl | Sigma |
1-Hexyl-3-methylimidazolium chloride | C6[mim]-Cl | Solvent Innovations |
1-Octyl-3-methylimidazolium chloride | C8[mim]-Cl | Iolitec |
1-Decyl-3-methylimidazolium chloride | C10[mim]-Cl | Sigma |
1-Butyl-3-methylimidazolium diethyleneglycol monomethylether sulfate | ECOENG 41 | Solvent Innovations |
1-Octyl-3-methylimidazolium diethyleneglycol monomethylether sulfate | ECOENG 48 | Solvent Innovations |
1-Methyl-3-methyl-midazolium methyl sulfate | C1[mim]-MeS | Solvent Innovations |
1-Ethyl-3-methylimidazolium diethyl phosphate | C2[mim]-DEtP | Iolitec |
1-Ethyl-3-methylimidazolium triflate | C2[mim]-TFL | Iolitec |
1-Ethyl-3-methylimidazolium acetate | C2[mim]-Ac | Iolitec |
1-Ethyl-3-methylimidazolium ethylsulfate | C2[mim]-EtS | Iolitec |
1-Ethyl-3-methylimidazolium bromide | C2[mim]-Br | Fluka |
1-Butyl-3-methylimidazolium tetrafluoroborate | C4[mim]-BF4 | Sigma |
1-Butyl-3-methylimidazolium dicyanamide | C4[mim]-DCN | Iolitec |
Choline dihydrogen phosphate | Ch-DHP | Iolitec |
N-Butyl, N-methylpyrrolidinium dihydrogen phosphate | C4Me[pyrr]-DHP | [2] |
N-Methyl-N-butyl-pyridinium bromide | C4[mpy]-Br | Solvent Innovations |
Ethyl ammonium nitrate | EAN | Iolitec |
2-Hydroxyethyl-trimethylammonium L-(+)-lactate | HOEt[TMAm]-Lac | Sigma |
Choline acetate | Ch-Ac | Sigma |
2-Hydroxyethylammonium formate | HOEtAm-Form | Iolitec |
Cocosalkyl pentaethoxy methylammonium Methylsulfate | ECOENG 500 | Solvent Innovations |
E. coli | S. typhimurium | F. tularensis | C. jejuni | K. pneumoniae | H. influenzae | A. baumannii | S. pyrogenes | S. pneumoniae | |
---|---|---|---|---|---|---|---|---|---|
E. coli | 100.00 | 94.32 | 63.01 | 51.16 | 42.86 | 33.33 | 67.43 | 18.67 | 19.28 |
S. typhimurium | 94.32 | 100.00 | 61.27 | 50.00 | 41.71 | 33.33 | 65.14 | 18.67 | 19.28 |
F. tularensis | 63.01 | 61.27 | 100.00 | 52.05 | 42.44 | 35.09 | 56.07 | 16.46 | 17.68 |
C. jejuni | 51.16 | 50.00 | 52.05 | 100.00 | 40.70 | 31.58 | 49.42 | 21.47 | 19.63 |
K. pneumoniae | 42.86 | 41.71 | 42.44 | 40.70 | 100.00 | 32.00 | 40.23 | 14.12 | 16.47 |
H. influenzae | 33.33 | 33.33 | 35.09 | 31.58 | 32.00 | 100.00 | 31.79 | 16.27 | 15.06 |
A. baumannii | 67.43 | 65.14 | 56.07 | 49.42 | 40.23 | 31.79 | 100.00 | 21.21 | 21.21 |
S. pyrogenes | 18.67 | 18.67 | 16.46 | 21.47 | 14.12 | 16.27 | 21.21 | 100.00 | 82.64 |
S. pneumoniae | 19.28 | 19.28 | 17.68 | 19.63 | 16.47 | 15.06 | 21.21 | 82.64 | 100.00 |
IL | Pcpt→Xtl | Non-Faceted→Xtl | All |
---|---|---|---|
Ch-DHP | 28 | 5 | 49 |
C4[mim]-BF4 | 22 | 4 | 43 |
C4Me[pyrr]-DHP | 14 | 1 | 26 |
C4[mim]-DCN | 11 | 0 | 22 |
C1[mim]-MeS | 11 | 0 | 18 |
C2[mim]-DEtP | 10 | 4 | 28 |
C2[mim]-TFL | 9 | 3 | 25 |
C4[mpy]-Br | 9 | 2 | 21 |
ECOENG 41 | 9 | 1 | 14 |
C2[mim]-Cl | 9 | 0 | 25 |
C2[mim]-Ac | 8 | 4 | 19 |
dH2O | 8 | 3 | 29 |
HOEtAm-Form | 8 | 3 | 20 |
EAN | 8 | 2 | 23 |
C2[mim]-EtS | 8 | 1 | 24 |
HOEt[TMAm]-Lac | 6 | 4 | 17 |
C4[mim]-Cl | 6 | 3 | 30 |
C6[mim]-Cl | 6 | 2 | 14 |
C2[mim]-Br | 5 | 2 | 23 |
ChAc | 5 | 1 | 20 |
C8[mim]-Cl | 5 | 1 | 10 |
ECOENG 48 | 3 | 0 | 5 |
ECOENG 500 | 2 | 0 | 8 |
C10[mim]-Cl | 0 | 0 | 6 |
IL | Xtl→Xtl | 5,6→Xtl | 0–4→Xtl |
---|---|---|---|
C4[mim]-BF4 | 6 | 1 | 13 |
Ch-DHP | 3 | 6 | 8 |
C1[mim]-MeS | 2 | 0 | 8 |
C4Me[pyrr]-DHP | 2 | 0 | 7 |
C2[mim]-TFL | 4 | 2 | 5 |
C2[mim]-Ac | 3 | 2 | 5 |
C2[mim]-DEtP | 4 | 2 | 5 |
ECOENG 41 | 0 | 0 | 5 |
HOEt[TMAm]-Lac | 3 | 3 | 4 |
HOEtAm-Form | 2 | 2 | 4 |
ChAc | 5 | 1 | 4 |
C2[mim]-Cl | 7 | 0 | 4 |
C4[mim]-DCN | 5 | 0 | 4 |
C6[mim]-Cl | 2 | 2 | 3 |
EAN | 3 | 2 | 3 |
C2[mim]-Br | 5 | 1 | 3 |
C2[mim]-EtS | 7 | 1 | 3 |
C4[mpy]-Br | 2 | 0 | 3 |
ECOENG 500 | 1 | 0 | 3 |
dH2O | 5 | 2 | 2 |
C4[mim]-Cl | 7 | 1 | 2 |
C8[mim]-Cl | 1 | 1 | 2 |
ECOENG 48 | 0 | 0 | 1 |
C10[mim]-Cl | 3 | 0 | 0 |
Ch-DHP | C4[mim]-BF4 | C4Me[pyrr]-DHP | C4[mim]-DCN | |
---|---|---|---|---|
Total Instances | 49 | 42 | 26 | 22 |
Ch-DHP | 100% | 21% (9) | 15% (4) | 23% (5) |
C4[mim]-BF4 | 100% | 27% (7) | 15% (3) | |
C4Me[pyrr]-DHP | 100% | 5% (1) | ||
C4[mim]-DCN | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarver, C.L.; Yuan, Q.; Pusey, M.L. Ionic Liquids as Protein Crystallization Additives. Crystals 2021, 11, 1166. https://doi.org/10.3390/cryst11101166
Tarver CL, Yuan Q, Pusey ML. Ionic Liquids as Protein Crystallization Additives. Crystals. 2021; 11(10):1166. https://doi.org/10.3390/cryst11101166
Chicago/Turabian StyleTarver, Crissy L., Qunying Yuan, and Marc L. Pusey. 2021. "Ionic Liquids as Protein Crystallization Additives" Crystals 11, no. 10: 1166. https://doi.org/10.3390/cryst11101166
APA StyleTarver, C. L., Yuan, Q., & Pusey, M. L. (2021). Ionic Liquids as Protein Crystallization Additives. Crystals, 11(10), 1166. https://doi.org/10.3390/cryst11101166