Strength, Fracture and Durability Characteristics of Ambient Cured Alkali—Activated Mortars Incorporating High Calcium Industrial Wastes and Powdered Reagents
Abstract
:1. Introduction
2. Experimental Program, Materials, and Methods
2.1. Materials
2.2. Mix Proportions
2.3. Mixing, Casting, and Curing of Specimens
2.4. Test Methods
3. Results and Discussions
3.1. Mechanical Characteristics of Mortars
3.1.1. Dry Density, Compressive Strength and UPV
3.1.2. Fracture Characteristics of Mortars
3.2. Durability Characteristics
3.2.1. Shrinkage/Expansion
3.2.2. Sorptivity
3.2.3. Freeze-Thaw Resistance of Mortars
3.3. Microstructural Analysis
3.3.1. SEM/EDS Analysis
3.3.2. XRD Analysis
4. Conclusions
- 1.
- The 28-day compressive strength of mortars ranged between 34 MPa and 44 MPa. The mortars incorporating reagent 2 (CSM2, CSM2N, CFSM2 and CFSM2N) exhibited higher compressive strengths than their counterparts with reagent 1 (CSM1, CSM1N, CFSM1 and CFSM1N). This can be attributed to the dominant formation of portlandite (CaOH2) in the reagent 2 mixes, which is responsible for synthesizing additional binding phases (C-S-H), resulting in the denser and more compact microstructure. SEM/EDS and XRD analysis, also revealed the formation of C-A-S-H/N-C-A-S-H and C-A-S-H/C-S-H as the primary binding phases for mortars with reagent 1 and reagent 2, respectively.
- 2.
- Ternary mortars (represented by CFS) demonstrated up to 1.7 times higher fracture toughness and 3.6 times higher crack tip toughness than their binary (represented by CS) counterparts, irrespective of reagent types, owing to the formation of a combination of binding phases (N-A-S-H/N-C-A-S-H and C-A-S-H). However, the mix CFSM1N (with an equal proportion of fly ash and GGBFS) exhibited lower fracture and crack tip toughness than its binary counterpart (CSM1N) due to its lowest peak load (in fracture energy test) and compressive strength. Generally, all the mortar mixes exhibited low level of fracture and crack tip toughness, which is ideal for using them in producing fibre-reinforced strain hardening composites.
- 3.
- Ternary mortars incorporating class F fly ash showed comparatively lower shrinkage/expansion (from −0.391% to 0.128%) than their binary (from −0.576% to 0.348%) and paste (from −0.048% to −0.436%) counterparts at 56 days under water immersion. The incorporation of inert fine silica sand and low reactive FA-F reduced the shrinkage/expansion in water and air/ambient curing regimes by producing denser microstructure through filling the voids. Such densification of microstructure due to the addition of silica sand also produced a lower mass change of all mortar specimens (from −0.86% to −9.56%) compared to their paste counterparts (mass change up to −17.21%) in the air curing regime at 56 days. Ternary mortars also exhibited up to 52% lower initial sorptivity (from 1.0 × 10−3 mm/√s to 3.3 × 10−3 mm/√s) than their binary counterparts (from 2.0 × 10−3 mm/√s to 5.1 × 10−3 mm/√s). The shrinkage and expansion characteristics of mortars was found to be influenced by the type of reagent, chemical ratios and curing regimes. In general, mortars with reagent 2 and reagent 1 demonstrated expansion and shrinkage, respectively, at all ages under the water curing regime.
- 4.
- The reagent 2 mortars exhibited better freeze-thaw resistance by showing no reduction in UPV and RDME (maintaining at 100%) during 60 cycles of freeze-thaw due to their denser microstructure consisting mainly of crystalline C-A-S-H/C-S-H gels. Reagent 1 mortars exhibited 23% and 40% reduction of UPV and RDME, respectively, at 30 cycles, but subsequently showed comparable performance to their reagent 2 counterparts by achieving RDME of 100% at 60 cycles, possibly due to the re-arrangement of crystalline and amorphous gels at micro-level.
- 5.
- This research demonstrated the viability of producing ambient cured powder-based AAMs as green and sustainable alternatives to conventional cement-based mortars, having satisfactory mechanical, durability and microstructural characteristics. The developed AAMs have the potential to be used for structural applications and to produce high-performance fibre-reinforced strain hardening composites for resilient infrastructures.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Van Deventer Geopolymer technology: The current state of the art. J. Mater. Sci. 2006, 42, 2917–2933. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Hossain, K.M.A. Properties of volcanic pumice based cement and lightweight concrete. Cem. Concr. Res. 2004, 34, 283–291. [Google Scholar] [CrossRef]
- Hassan, A.A.; Lachemi, M.; Hossain, K.M. Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cem. Concr. Compos. 2012, 34, 801–807. [Google Scholar] [CrossRef]
- Kurda, R.; Silva, R.V.; de Brito, J. Incorporation of alkali-activated municipal solid waste incinerator bot-tom ash in mortar and concrete: A critical review. Materials 2020, 13, 3428. [Google Scholar] [CrossRef] [PubMed]
- Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Asaad, M.A.; Tahir, M.M.; Mirza, J. Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Constr. Build. Mater. 2019, 214, 355–368. [Google Scholar] [CrossRef]
- Candamano, S.; Crea, F.; Iorfida, A. Mechanical characterization of basalt fabric-reinforced alkali-activated matrix composite: A preliminary investigation. Appl. Sci. 2020, 10, 2865. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 2016, 89, 253–265. [Google Scholar] [CrossRef]
- Li, V.C.; Mishra, D.K.; Wu, H.C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Mater. Struct. 1995, 28, 586–595. [Google Scholar] [CrossRef]
- Li, V.C.; Wang, S.; Wu, C. Tensile strain-hardening behaviour of Polyvinyl Alcohol Engineered Cementitious Composites (PVA-ECC. ACI Mater. J. 2001, 98, 483–492. [Google Scholar]
- Ding, Y.; Shi, C.-J.; Li, N. Fracture properties of slag/fly ash-based geopolymer concrete cured in ambient temperature. Constr. Build. Mater. 2018, 190, 787–795. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Ghiassi, B.; Yin, S.; Ye, G. Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes. Cem. Concr. Res. 2021, 144, 106447. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.; Rangan, B.V. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011, 63, 763–771. [Google Scholar] [CrossRef]
- Trindade, A.C.C.; Curosu, I.; Liebscher, M.; Mechtcherine, V.; de Andrade Silva, F. On the mechanical performance of K- and Na-based strain-hardening geopolymer composites (SHGC) reinforced with PVA fibers. Constr. Build. Mater. 2020, 248, 01–16. [Google Scholar]
- Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.-H. Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Constr. Build. Mater. 2017, 131, 552–563. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Ye, G. Drying shrinkage of alkali-activated slag and fly ash concrete; A comparative study with ordinary Portland cement concrete. Heron 2019, 64, 01–15. [Google Scholar]
- Wang, G.; Ma, Y. Drying shrinkage of alkali-activated fly ash/slag blended system. J. Sustain. Cem. Mater. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Abdel-Gawwad, H.A.; Abd El-Aleem, S. Effect of reactive magnesium oxide on properties of alkali activated slag geopolymer cement pastes. Ceram. Silikaty 2015, 59, 37–47. [Google Scholar]
- Coppola, L.; Coffetti, D.; Crotti, E.; Candamano, S.; Crea, F.; Gazzaniga, G.; Pastore, T. The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes. Constr. Build. Mater. 2020, 248, 118682. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Luukkonen, T.; Kinnunen, P.; Illikainen, M. One-part geopolymer cement from slag and pretreated paper sludge. J. Clean. Prod. 2018, 185, 168–175. [Google Scholar] [CrossRef]
- Huseien, G.F.; Tahir, M.M.; Mirza, J.; Ismail, M.; Shah, K.W.; Asaad, M.A. Effects of POFA replaced with FA on durability properties of GBFS included alkali activated mortars. Constr. Build. Mater. 2018, 175, 174–186. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J.; Ng, T.; Sanjayan, J.G.; Gilbert, R.I. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. 2015, 49, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- Alnkaa, A.; Yaprak, H.; Memiş, S.; Kaplan, G. Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar. Int. J. Eng. Res. Dev. 2018, 14, 51–55. [Google Scholar]
- Thomas, R.; Lezama, D.; Peethamparan, S. On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cem. Concr. Res. 2017, 91, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Coppola, L.; Coffetti, D.; Crotti, E.; Gazzaniga, G.; Pastore, T. The Durability of One-Part Alkali-Activated Slag-Based Mortars in Different Environments. Sustainability 2020, 12, 3561. [Google Scholar] [CrossRef]
- Wardhono, A.; Gunasekara, C.; Law, D.; Setunge, S. Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Constr. Build. Mater. 2017, 143, 272–279. [Google Scholar] [CrossRef]
- Adesina, A.; Das, S. Drying shrinkage and permeability properties of fibre reinforced alkali-activated composites. Constr. Build. Mater. 2020, 251, 119076. [Google Scholar] [CrossRef]
- Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete. Mater. Des. 2013, 49, 1034–1041. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. Volcanic ash-based geopolymer cements/concretes: The current state of the art and perspectives. Environ. Sci. Pollut. Res. 2017, 24, 4433–4446. [Google Scholar] [CrossRef]
- Allahverdi, A.; Shaverdi, B.; Najafi, K.E. Influence of Sodium Oxide on Properties of Fresh and hardened paste of alkali activated blast furnace slag. Int. J. Civ. Eng. 2010, 8, 304–314. [Google Scholar]
- Sood, D.; Hossain, K.M.A. Optimizing Precursors and Reagents for the Development of Alka-li-Activated Binders in Ambient Curing Conditions. J. Compos. Sci. 2021, 5, 59. [Google Scholar] [CrossRef]
- Sood, D.; Hossain, K.M.A.; Manzur, T.; Hasan, M.J. Developing Geopolymer Pastes Using Dry Mixing Technique. In Proceedings of the 7th International Conference on Engineering Mechanics and Materials (CSCE 2019), Laval, QC, Canada, 12–15 June 2019; pp. 12–15. [Google Scholar]
- Sherir, M.A.; Hossain, K.M.; Lachemi, M. Self-healing and expansion characteristics of cementitious composites with high volume fly ash and MgO-type expansive agent. Constr. Build. Mater. 2016, 127, 80–92. [Google Scholar] [CrossRef]
- Sherir, M.A.; Hossain, K.M.; Lachemi, M. Permeation and Transport Properties of Self-Healed Cementitious Composite Produced with MgO Expansive Agent. J. Mater. Civ. Eng. 2018, 30, 1–12. [Google Scholar] [CrossRef]
- ASTM C109/C109M-16. Standard test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens); ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Nematollahi, B.; Sanjayan, J.; Ahmed Shaikh, F.U. Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite. J. Mater. Civ. Eng. 2015, 10, 04015001. [Google Scholar] [CrossRef]
- Karihaloo, B.L.; Nallathambi, P. Effective Crack Model For The Determination Of Fracture Toughness KfJ Of Concrete. Eng. Fract. Mech. 1990, 415, 631–645. [Google Scholar]
- ASTM C490/C490M-17. Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C596-17. Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C157/C157M-17. Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM C1585-13. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic- Cement Concretes; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM C666-15. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Kan, A.; Demirbog, R. A novel material for lightweight concrete production. Cem. Concr. Compos. 2009, 31, 489–495. [Google Scholar] [CrossRef]
- Özbay, E.; Sahmaran, M.; Lachemi, M.; Yücel, H.E. Effect of Microcracking on Frost Durability of High-Volume Fly-Ash and Slag-Incorporated Engineered Cementitious Composites. ACI Mater. J 2013, 110, 259–267. [Google Scholar]
- Özbay, E.; Karahan, O.; Lachemi, M.; Hossain, K.M.; Atis, C.D. Dual effectiveness of freezing-thawing and sulfate attack on high-volume slag-incorporated ECC. Compos. Part B 2013, 45, 1384–1390. [Google Scholar] [CrossRef]
- ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary, ACI 318-19; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Karihaloo, B.L.; Nallathambi, P. Effective crack model for the determination of fracture toughness (KIce) of concrete. Eng. Fract. Mech. 1990, 35, 637–645. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.-H. High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation. Arch. Civ. Mech. Eng. 2017, 17, 555–563. [Google Scholar] [CrossRef]
- Zhang, S.; Li, V.C.; Ye, G. Micromechanics-guided development of a slag/fly ash-based strain-hardening geopolymer composite. Cem. Concr. Compos. 2020, 109, 103510. [Google Scholar] [CrossRef]
- Batista, R.P.; Trindade, A.C.C.; Borges, P.H.; Silva, F.D.A. Silica fume as precursor in the development of sustainable and high-performance MK-based alkali-activated materials reinforced with short PVA fibers. Front. Mater. 2019, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Alrefaei, Y.; Dai, J.G. Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr. Build. Mater. 2018, 184, 419–431. [Google Scholar] [CrossRef]
- Punurai, W.; Kroehong, W.; Saptamongkol, A.; Chindaprasirt, P. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr. Build. Mater. 2018, 186, 62–70. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Shahrajabian, F.; Behfarnia, K. The effects of nano particles on freeze and thaw resistance of alka-li-activated slag concrete. Constr. Build. Mater. 2018, 176, 172–178. [Google Scholar] [CrossRef]
- Pan, Z.; Tao, Z.; Cao, Y.F.; Wuhrer, R.; Murphy, T. Compressive strength and microstructure of alka-li-activated fly ash/slag binders at high temperature. Cem. Concr. Compos. 2018, 86, 9–18. [Google Scholar] [CrossRef]
Chemical Composition (%) | FA-C | FA-F | GGBFS | Cement |
---|---|---|---|---|
SiO2 | 36.53 | 55.66 | 35.97 | 19.35 |
Al2O3 | 18.26 | 22.09 | 9.18 | 5.31 |
Fe2O3 | 5.66 | 4.26 | 0.50 | 3.10 |
CaO | 20.97 | 7.97 | 38.61 | 62 |
MgO | 5.08 | 1.16 | 10.99 | 3 |
K2O | 0.68 | 1.49 | 0.36 | - |
Na2O | 4.04 | 4.10 | 0.28 | 0.23 |
MnO | 0.03 | 0.03 | 0.25 | - |
TiO2 | 1.26 | 0.61 | 0.39 | - |
P2O5 | 0.96 | 0.43 | 0.01 | - |
LOI. | 2.18 | 1.05 | 0.74 | 2.40 |
Physical Properties | FA-C | FA-F | GGBFS | Cement |
Density (g/cm3) | 2.61 | 2.02 | 2.87 | 3.15 |
Retained on 45 µ (%) | <5 | <10 | <5 | <10 |
Blaine fineness (m2/kg) | 315 | 306 | 489.30 | 410 |
Mix Designation | Total SCMs (Binder *) | Cement | FA-C | FA-F | GGBFS | Reagent Type | Reagent/Binder | Silica Sand | Water/Binder | HRWRA ** |
---|---|---|---|---|---|---|---|---|---|---|
Alkali Activated Mortars (AAMs)-CS: Binary and CFS: Ternary | ||||||||||
CSM1 | 1 | 0 | 0.55 | 0 | 0.45 | 1 | 0.09 | 0.3 | 0.35 | 0.02 |
CSM1N | 1 | 0 | 0.50 | 0 | 0.50 | 1 | 0.09 | 0.3 | 0.35 | 0.02 |
CFSM1 | 1 | 0 | 0.25 | 0.35 | 0.40 | 1 | 0.09 | 0.3 | 0.35 | 0.02 |
CFSM1N | 1 | 0 | 0.25 | 0.25 | 0.50 | 1 | 0.09 | 0.3 | 0.35 | 0.02 |
CSM2 | 1 | 0 | 0.55 | 0 | 0.45 | 2 | 0.12 | 0.3 | 0.375 | 0.02 |
CSM2N | 1 | 0 | 0.50 | 0 | 0.50 | 2 | 0.12 | 0.3 | 0.375 | 0.02 |
CFSM2 | 1 | 0 | 0.25 | 0.35 | 0.40 | 2 | 0.12 | 0.3 | 0.375 | 0.02 |
CFSM2N | 1 | 0 | 0.25 | 0.25 | 0.50 | 2 | 0.12 | 0.3 | 0.375 | 0.02 |
Control Mortar | ||||||||||
FPCM | 1 | 0.45 | 0 | 0.55 | 0 | N.A. | NA. | 0.36 | 0.27 | 0.006 |
Mix Designation | Reagent Type | Reagent Component Ratio | Chemical Ratios (SCMs + Reagents) | 28-Day Compressive Strength (MPa) | 28-Day Density (kg/m3) | |||
---|---|---|---|---|---|---|---|---|
SiO2/Al2O3 | Na2O/SiO2 | CaO/SiO2 | Na2O/Al2O3 | |||||
CSM1 | 1 | 1:2.5 | 2.62 | 0.09 | 0.84 | 0.23 | 42.6 | 2088 |
CSM1N | 1 | 1:2.5 | 2.71 | 0.08 | 0.87 | 0.23 | 35.0 | 2075 |
CFSM1 | 1 | 1:2.5 | 2.75 | 0.08 | 0.59 | 0.22 | 40.4 | 2030 |
CFSM1N | 1 | 1:2.5 | 2.86 | 0.07 | 0.69 | 0.21 | 34.0 | 2010 |
CSM2 | 2 | 2.5:1 | 2.56 | 0.14 | 1.02 | 0.35 | 41.2 | 2042 |
CSM2N | 2 | 2.5:1 | 2.64 | 0.13 | 1.02 | 0.35 | 35.8 | 2032 |
CFSM2 | 2 | 2.5:1 | 2.69 | 0.12 | 0.73 | 0.32 | 42.0 | 1983 |
CFSM2N | 2 | 2.5:1 | 2.80 | 0.12 | 0.84 | 0.33 | 38.1 | 2055 |
FPCM | - | - | 2.70 | 0.06 | 0.82 | 0.16 | 43.5 | 1937 |
Mix Designation | Density (kg/m3) | Compressive Strength-fcu (MPa) | fcu (% Increase) | UPV (m/s) | |
---|---|---|---|---|---|
28-Day | 28-Day | 56-Day | 56-Day | 28-Day | |
CSM1 | 2088 ± 45 | 42.6 ± 1.92 | 49.0 ± 1.78 | 15.0 | 3240 ± 65 |
CSM1N | 2075 ± 38 | 35.0 ± 1.43 | 41.5 ± 1.56 | 18.6 | 3502 ± 73 |
CSM2 | 2042 ± 52 | 41.2 ± 1.78 | 48.5 ± 1.84 | 17.7 | 3746 ± 78 |
CSM2N | 2032 ± 49 | 35.8 ± 1.74 | 40.0 ± 1.45 | 11.7 | 4049 ± 84 |
CFSM1 | 2030 ± 32 | 40.4 ± 1.65 | 45.2 ± 1.64 | 11.9 | 3320 ± 68 |
CFSM1N | 2010 ± 24 | 34.0 ± 1.59 | 38.1 ± 1.55 | 12.1 | 3367 ± 70 |
CFSM2 | 1983 ± 18 | 42.0 ± 1.84 | 46.4 ± 1.85 | 10.5 | 3205 ± 59 |
CFSM2N | 2055 ± 42 | 38.1 ± 1.53 | 41.2 ± 1.65 | 8.1 | 3607 ± 72 |
FPCM | 1937 ± 15 | 43.5 ± 1.83 | 50.0 ± 1.86 | 14.9 | 4133 ± 92 |
Mix Designation | Peak Load (kN) | Peak Displacement (mm) | Fracture Energy (N/m) | Elastic Modulus (Em) (GPa) | Fracture Toughness (Km) (MPa m1/2) | Crack Tip Toughness (Jtip) (J/m2) | 28-Day Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|
FPCM | 0.33 | 0.62 | 95.28 ± 2.86 | 1.14 ± 0.06 | 0.188 ± 0.007 | 10 ± 0.34 | 43.5 ± 1.83 |
CSM1 | 0.57 | 0.29 | 64.67 ± 2.26 | 1.74 ± 0.09 | 0.242 ± 0.008 | 34 ± 1.35 | 42.6 ± 1.92 |
CSM1N | 0.24 | 0.78 | 73.44 ± 2.12 | 0.542 ± 0.03 | 0.203 ± 0.008 | 76 ± 2.92 | 35 ± 1.43 |
CSM2 | 0.55 | 0.19 | 37.98 ± 1.16 | 1.77 ± 0.09 | 0.282 ± 0.014 | 45 ± 1.86 | 41.2 ± 1.78 |
CSM2N | 0.23 | 0.66 | 94.49 ± 3.02 | 0.757 ± 0.03 | 0.229 ± 0.011 | 69 ± 3.11 | 35.8 ± 1.74 |
CFSM1 | 0.66 | 0.36 | 73.14 ± 2.12 | 1.42 ± 0.073 | 0.415 ± 0.019 | 121 ± 5.32 | 40.4 ± 1.65 |
CFSM1N | 0.08 | 1.03 | 38.46 ± 1.27 | 0.64 ± 0.03 | 0.078 ± 0.004 | 9 ± 0.35 | 34 ± 1.59 |
CFSM2 | 0.39 | 0.32 | 47.36 ± 1.42 | 1.128 ± 0.05 | 0.297 ± 0.013 | 78 ± 3.34 | 42 ± 1.84 |
CFSM2N | 0.68 | 0.41 | 78.35 ± 2.65 | 1.065 ± 0.04 | 0.393 ± 0.015 | 145 ± 6.53 | 38.1 ± 1.53 |
Paste Mixes | Length Change (%) | Mass Change (%) | 56-Day Comp. Strength (MPa) | Mortar Mixes | Length Change (%) | Mass Change (%) | 56-Day Comp. Strength (MPa) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
56-Day | 90-Day | 56-Day | 90-Day | 56-Day | 90-Day | 56-Day | 90-Day | ||||
FPC | 0.42 | 0.20 | 4.13 | 4.20 | 50.5 | FPCM | 0.59 | 0.55 | 1.69 | 1.75 | 50 |
CS1 | −0.77 | −0.63 | 0.26 | −3.5 | 55.4 | CSM1 | −0.58 | −0.41 | 0.22 | 0.48 | 49 |
CS1N | −0.54 | −0.48 | 0.12 | 0.02 | 47 | CSM1N | −0.56 | −0.35 | 0.23 | 0.54 | 41.5 |
CS2 | −0.22 | −0.2 | 0.59 | 0.64 | 64.2 | CSM2 | 0.35 | 0.45 | 1.86 | 2.41 | 48.5 |
CS2N | 0 | 0.18 | 1.95 | 2.05 | 49 | CSM2N | −0.15 | −0.15 | 0.71 | 0.80 | 40 |
CFS1 | −0.44 | −0.30 | 0.93 | −3.66 | 54.2 | CFSM1 | −0.39 | −0.22 | 0.69 | 1.24 | 45.2 |
CFS1N | −0.05 | −0.06 | 1.66 | 1.53 | 44.4 | CFSM1N | −0.26 | −0.18 | 0.99 | 0.85 | 38.11 |
CFS2 | −0.06 | −0.04 | 0.78 | 0.82 | 56 | CFSM2 | 0.13 | 0.32 | 0.64 | 0.55 | 46.4 |
CFS2N | −0.18 | 0.06 | 0.43 | 0.56 | 46.5 | CFSM2N | 0.13 | 0.29 | 1.70 | 1.35 | 41.2 |
Paste | Strain (%) | Mass Change (%) | Mortar | Strain (%) | Mass Change (%) | ||||
---|---|---|---|---|---|---|---|---|---|
56-Day | 90-Day | 56-Day | 90-Day | 56-Day | 90-Day | 56-Day | 90-Day | ||
FPC | −0.18 | −0.69 | −2.07 | −2.94 | FPCM | −0.04 | −0.22 | −0.08 | −0.52 |
CS1 | −4.56 | −5.04 | −17.29 | −13.32 | CSM1 | −1.33 | −1.34 | −7.51 | −11.28 |
CS1N | −4.23 | −4.56 | −14.56 | −9.36 | CSM1N | −0.96 | −0.90 | −5.56 | −7.36 |
CS2 | −2.04 | −3.56 | −9.92 | −13.23 | CSM2 | −1.98 | −2.65 | −6.15 | −8.21 |
CS2N | −0.08 | −1.67 | 1.89 | −5.46 | CSM2N | −1.58 | −2.14 | −6.71 | −8.67 |
CFS1 | −3.64 | −5.24 | −10.12 | −13.76 | CFSM1 | −2.82 | −3.46 | −9.56 | −10.60 |
CFS1N | −3.24 | −4.91 | −7.37 | −9.38 | CFSM1N | −2.61 | −4.14 | −6.66 | −8.38 |
CFS2 | −2.00 | −3.59 | −6.67 | −10.85 | CFSM2 | −1.62 | −2.82 | −5.73 | −9.60 |
CFS2N | −2.17 | −3.30 | −5.50 | −7.14 | CFSM2N | −0.03 | −1.66 | −0.86 | −3.51 |
Mix Designation | Ultrasonic Pulse Velocity Longitudinal Direction (355.6 mm) | Ultrasonic Pulse Velocity Transverse Direction (50.8 mm) | Initial Sorptivity (mm/√s) | Secondary Sorptivity (mm/√s) | Density (kg/m3) | Compressive Strength (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 Cycles | 30 Cycles | 60 Cycles | 0 Cycles | 30 Cycles | 60 Cycles | 28-Day | 28-Day | 56-Day | |||
FPCM | 4133 | 4123 | 4171 | 4080 | 3893 | 4080 | 1.9 × 10−3 | 5 × 10−4 | 1878 | 43.5 | 50 |
CSM1 | 3240 | 3231 | 3299 | 2372 | 1917 | 2670 | 2.0 × 10−3 | 5 × 10−4 | 2128 | 42.6 | 49 |
CSM1N | 3502 | 3237 | 3386 | 2713 | 2098 | 2713 | 2.3 × 10−3 | 5 × 10−4 | 2046 | 35 | 41.5 |
CSM2 | 3746 | 3543 | 3415 | 3777 | 3777 | 3777 | 4.9 × 10−3 | 4 × 10−4 | 2047 | 41.2 | 48.5 |
CSM2N | 4049 | 3908 | 3785 | 2452 | 2463 | 2463 | 5.1 × 10−3 | 4 × 10−4 | 2079 | 35.8 | 40 |
CFSM1 | 3320 | 3275 | 3352 | 2656 | 2656 | 2965 | 1.0 × 10−3 | 3 × 10−4 | 2034 | 40.4 | 45.2 |
CFSM1N | 3367 | 3336 | 3211 | 3517 | 3469 | 3290 | 1.1 × 10−3 | 3 × 10−4 | 1953 | 34 | 38.1 |
CFSM2 | 3205 | 3199 | 2987 | 2266 | 2297 | 2266 | 3.0 × 10−3 | 2 × 10−4 | 2031 | 42 | 46.4 |
CFSM2N | 3607 | 3589 | 3713 | 3617 | 3642 | 3642 | 3.3 × 10−3 | 2 × 10−4 | 1974 | 38.1 | 41.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sood, D.; Hossain, K.M.A. Strength, Fracture and Durability Characteristics of Ambient Cured Alkali—Activated Mortars Incorporating High Calcium Industrial Wastes and Powdered Reagents. Crystals 2021, 11, 1167. https://doi.org/10.3390/cryst11101167
Sood D, Hossain KMA. Strength, Fracture and Durability Characteristics of Ambient Cured Alkali—Activated Mortars Incorporating High Calcium Industrial Wastes and Powdered Reagents. Crystals. 2021; 11(10):1167. https://doi.org/10.3390/cryst11101167
Chicago/Turabian StyleSood, Dhruv, and Khandaker M. A. Hossain. 2021. "Strength, Fracture and Durability Characteristics of Ambient Cured Alkali—Activated Mortars Incorporating High Calcium Industrial Wastes and Powdered Reagents" Crystals 11, no. 10: 1167. https://doi.org/10.3390/cryst11101167
APA StyleSood, D., & Hossain, K. M. A. (2021). Strength, Fracture and Durability Characteristics of Ambient Cured Alkali—Activated Mortars Incorporating High Calcium Industrial Wastes and Powdered Reagents. Crystals, 11(10), 1167. https://doi.org/10.3390/cryst11101167